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Creating sharp features by colliding shocks on uniformly irradiated surfaces
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Using a theoretical analysis of the ion beam sputtering dynamics, we demonstrate how ion bombardment on
an initially sloped surface can create knife-edge-like ridges on the surface. These ridges arise as nonclassical
shocklike solutions that are undercompressive on both sides and appear to control the dynamics over a large
range of initial conditions. The slope of the ridges is selected uniquely by the dynamics and can be up to 30 or
more depending on the orientation dependence of the sputtering yield. For 1 keV Ar+ on Si(001), the scale of the
ridge is ≈2 nm. This is much smaller than the most unstable length scale and suggests a method for creating very
steep, very sharp features on a surface spontaneously, by prepatterning the surface to contain relatively modest
slopes on the macroscale.
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I. INTRODUCTION

Fabricating nanoscale features on a surface is increasingly
important, but many methods suffer throughput limitations too
restrictive to permit them to be widely implemented on a large
scale. It is therefore of interest to find techniques stemming
from self-organization principles, whereby macroscale fea-
tures dynamically give rise to complex small-scale structures.1

A promising method is ion bombardment.2–4 This erodes a
surface at different rates depending on the slope of the surface,
so intricate two-dimensional structures can emerge. Currently
focused ion beam bombardment is used to micromachine tall,
steep features5,6 and to sculpt nanopore single-biomolecule
detectors,7,8 while uniform ion bombardment of a flat surface
is used to create semiconductor quantum dots from the linear
instabilities that are excited.9–11 The utility of these techniques
is, however, limited. Focused ion beams are costly in both
time and energy, while uniform irradiation of a flat surface
cannot achieve very steep nor very sharp structures because
of saturation and wave-number constraints on the linearly
unstable modes.

Here we predict that it is possible to create very sharp,
steep features from uniform ion bombardment, by starting
with a surface that is prepatterned to have modest slopes on
the macroscale. This allows the dynamics to become nonlinear,
without imposing a large cost: Such a prepatterning is
relatively cheap to achieve, for example, using optical standing
waves. If the initial slopes are larger than a critical value,
the surface spontaneously develops much larger slopes under
uniform ion bombardment (see Fig. 1). Specifically we show
that it evolves to a knife-edge-like ridge, whose shape is a fixed
function of the material, ions, and energy but is independent of
the initial patterning. One could imagine creating a large-scale
pattern with these robust nanoscale ridges to obtain a material
that is currently too costly to probe experimentally.

The knife-edge ridge is a particular nonclassical traveling
wave solution to the governing equations, and to understand
why and when it arises we must investigate the full landscape of
traveling wave solutions. We proceed as follows. In Sec. II we
introduce the governing equations and review the definitions of
classical and nonclassical traveling wave solutions. In Sec. III
we compute the entire set of traveling wave solutions for a

given material and energy, show that it supports an isolated
steep, sharp, nonclassical solution that looks like a knife
edge, and discuss how this generalizes for arbitrary materials.
Section IV investigates the dynamics of the height evolution
and how these can be understood from the set of traveling
wave solutions; in particular we show that a wide range of
conditions leads to the knife-edge solution. Section V shows
how the knife-edge solutions vary with different materials and
energies, and Sec. VI discusses the effect of an approximation
we make to simplify the analysis. Finally, we offer concluding
remarks in Sec. VII.

II. GOVERNING EQUATIONS AND TRAVELING WAVE
SOLUTIONS

Our analysis begins with the classical macroscopic descrip-
tion to ion beam sputtering,2 in which the height h(x,t) of the
surface is described by a nonlinear partial differential equation,
representing the combined effects of atom sputtering, atom
redeposition, and additional smoothing physics such as surface
diffusion or ion-enhanced viscous flow. We consider surface
morphologies that vary in one direction only. When the radius
of curvature of the surface is much larger than the lateral scale
over which an ion deposits its kinetic energy, the height evolves
according to12

ht + Y (|∇h|) = D(|∇h|)hxx + B0

√
1 + b2

∂2κ

∂s2
. (1)

Here Y (b) is the yield function, which gives the average
velocity of erosion of the surface as a function of its slope
b = |∇h| (or equivalently the angle of the incoming ion beam),
D(b) describes the second-order effects of sputtering and
redistribution, κ is the surface curvature, and ∂

∂s
= 1√

1+b2
∂
∂x

is the arc-length derivative. The final term represents surface
diffusion or viscous flow confined to a thin surface layer, and
the factor

√
1 + b2 accounts for the evolution of the height in

the direction parallel to the incoming ions.
Since we are interested in dynamical regimes producing

the smallest scale structures, we consider the limit where the
dominant smoothing mechanism is fourth order, so the D(b)
term is negligible in comparison. This simplifies the analysis
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FIG. 1. Schematic of surface height evolution. When the max-
imum slope of the initial patterning (left) is less than a critical
value (top), there is little slope amplification. When the slope of the
initial patterning is greater than a critical value (bottom), the slope is
amplified considerably and the knife-edge ridge forms.

and allows us to consider a smaller range of parameters; in
addition this term is not well constrained by measurements, so
it is difficult to incorporate quantitatively in a theoretical paper
at the present time. The validity of this approximation is likely
ion energy dependent, and we discuss it further in Sec. VI.

To analyze Eq. (1), it is convenient to use the slope b = hx

as the dynamical variable. After nondimensionalizing lengths
by L = (B0/Y0)1/3, times by T = L/Y0, and the yield function
as Ỹ (b) = Y (b)/Y0 where Y0 = Y (0), we obtain

bt + Ỹ (b)x = − ∂2

∂x2

{
1√

1 + b2

∂

∂x

[
bx

(1 + b2)3/2

]}
. (2)

The left-hand side has the mathematical structure of a
nonlinear conservation law, which arises in many physical
contexts and typically results in nonlinear waves such as
shocks or rarefaction waves.13 The local advection velocity is
given by Ỹ ′(b), which varies with b and so causes the slopes to
steepen; this effect is counteracted by fourth-order smoothing.
This steepening can lead to a sharp jump between some slope bl

on the left and some slope br on the right, which can propagate
as a traveling wave.

Our numerical simulations (described below) indicate that
such traveling wave solutions control the long-time dynamics
of (2) and provide an organizing principle for discovering
initial surface shapes leading to knife-edge solutions. It is
therefore useful to start our study by characterizing the pairs
(bl,br ) between which such traveling solutions can exist.
We seek solutions to (2) of the form S(η) = S(x − ct) with
boundary conditions S(−∞) = bl , S(∞) = br , S ′(±∞) = 0.
After integrating from +∞ → η, we obtain a third-order
boundary value problem for the traveling wave:

c(S − br ) − [Y (S) − Y (br )]

= B0

{
1√

1 + S2

[
S ′

(1 + S2)3/2

]′}′
, (3)

with boundary conditions (S,S ′,S ′′)|−∞ = (bl,0,0),
(S,S ′,S ′′)|∞ = (br,0,0). The speed c is determined by
integrating (2) from −∞ to +∞ to give

c = Y (br ) − Y (bl)

br − bl

. (4)

Strikingly not all pairs (bl,br ) can admit a traveling wave
solution. The reason for this can be heuristically understood

by a dimension-counting argument. A traveling wave solution
is a trajectory (S(η),S ′(η),S ′′(η)) in three-dimensional space,
connecting the left-hand endpoint (bl,0,0) to the right-hand
endpoint (br,0,0). For a solution to exist, the set of paths
leaving the left-hand point [the unstable manifold, denoted
US(−∞)] must intersect the set of paths which enter the
right-hand point [the stable manifold, denoted S(∞)], and the
intersection set must be at least one-dimensional. Whether or
not this can happen depends on the dimensions of US(−∞),
S(∞). These are calculated by linearizing the ODE obtained
from (2) about each of the boundary points at ±∞, and looking
for exponentially growing modes ∝ eλη. We find that λ3 ∝
c − Y (bl(r)), so US(−∞) is two-dimensional when c < Y (bl)
and one-dimensional otherwise, and S(∞) is two-dimensional
when c > Y (br ) and one-dimensional otherwise.

There are three possible families of solutions. When
both US(−∞), S(∞) are two-dimensional, a solution is
the intersection of two surfaces in R3; this can lead to an
intersection curve. Solutions of this type are classical shocks
and satisfy the Lax entropy condition Ỹ ′(bl) > c > Ỹ ′(br ), so
that the solution behind the jump moves faster than it and the
solution in front of the jump moves more slowly: The shock is
compressed from both sides.

When either US(−∞) or S(∞) is one-dimensional, a
solution exists when a curve and a surface intersect in such a
way that the intersection contains a curve; this is almost always
impossible. However, if we introduce another parameter, such
as by varying bl or br , then this extra dimension means it may
become possible to find a solution. This will violate one of the
inequalities in the Lax entropy condition; hence such solutions
are typically called undercompressive.14,15 Because we must
vary a parameter to find a solution, the set of values which
admit undercompressive solutions are a curve in (bl,br ) space.

The final possibility is that both US(−∞) and S(∞) are
one-dimensional, so we must vary two parameters to find a
solution. Such solutions will be undercompressive from both
sides, so we call them doubly undercompressive, and they will
be isolated points in (bl,br ) space.

III. TRAVELING WAVE LANDSCAPE

We numerically search for the values of (bl,br ) which admit
traveling wave solutions (see Sec. A 1 for methods), using as
a model the yield function for 1 keV Ar+ ion bombarded
Si(001). In nondimensional form this is given by

Y (θ )

Y (0)
= (cos θ )−f exp{−�[(cos θ )−1 − 1]}, (5)

where16 cos θ = (
√

1 + b2)−1, � = f cos θopt, f = 2.36, and
θopt = 69.5 (see Fig. 2). Figure 3 plots the solutions we
have found for |bl|,|br | � 8. There are five two-dimensional
regions of compressive solutions (red patches), four curves
of undercompressive solutions (red lines), and exactly one
doubly undercompressive solution (red star). Because there is
symmetry in the traveling wave equation under time and space
reversal, this figure is symmetric about the line bl = −br .

The doubly undercompressive solution, at (bl,br ) = (b∗, −
b∗) where b∗ = 4.7, corresponds to a sharp change in slope
which is antisymmetric about 0 (Fig. 3, right), so the height
of the surface looks like a knife edge. The change happens
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FIG. 2. Yield function (5) used as a case study. Markers indicate
undercompressive shock b0, doubly undercompressive shock b∗, and
the smallest slope bc

∗ above which b∗ emerges.

over a distance x ′ = 3.7, so the radius of curvature at the tip is
M−1 = 2.5−1. Madi et al.16 estimate B0 = 0.062 nm4/s and
Y0 = 3.7 × 10−4 nm/s, which implies a dimensional radius
of curvature of L/M = (B0/Y0)1/3/2.5 = 2.2 nm. This is
several times smaller than the most unstable wavelength of 9.8
nm. Experimental realization of this solution would therefore
provide a novel method to create very small-scale, sharp
features.

We should note that the approximation (1) breaks down
when the radius of curvature of the surface becomes equal to
the length scale over which an ion deposits its energy. This
length scale is at a maximum of 1.6 nm for a flat surface,
decreasing to 0.55 nm for a surface with slope b∗.12,16 As
these scales are approaching the radius of curvature of the
doubly undercompressive solution, additional physics may be

FIG. 3. (Color online) Red shading (darkest), red lines, red star:
Boundary conditions (bl,br ) yielding traveling wave solutions to (2).
Background shading indicates the type of solution possible: compres-
sive (dark), undercompressive (medium), doubly undercompressive
(white). Dashed line on boundary of some red regions indicates
uncertainty in exact location of boundary. Selected solutions (for
slope b = hx) with given boundary conditions: top (b0, 0), middle (1,
−1), bottom (b∗, − b∗).

required to quantitatively describe the dynamics after it has
formed.

The traveling wave landscape will change with the yield
function, which varies with the substrate, ions, and energy.
We have investigated a variety of experimentally measured
yield functions and found that the qualitative features of the
traveling wave landscape, such as possessing a single doubly
undercompressive solution, are similar to Fig. 3, but that
quantitative features, such as the slope of the solution, will
change. Therefore we focus on the above yield function as a
model to carry out our investigation and comment on how it
will vary for other materials in Sec. V.

IV. NUMERICAL SOLUTIONS TO THE GOVERNING
EQUATIONS

We have investigated ways of forming this knife-edge
solution by solving the PDE (2) numerically, searching for
initial conditions where the system spontaneously evolves to
the knife edge. (See Sec. A for a description of our numerical
procedure.) We will compare our results to the traveling wave
solutions found in Sec. III. Because these solutions become
shocks in the limit B0 → 0, we use the words “shock” and
“solution” interchangeably.

A. Fixed-slope boundary conditions

We first consider initial conditions in which the slopes at
the edges are constant. Our simulations demonstrate that if the
slopes at the edges are fixed to values in a red region for which
there exists a compressive shock, the solution evolves to the
corresponding traveling wave.

If we start with boundary values for which there is not
a traveling wave, then the solution in intermediate regions
creates at least two shocks, at least one of which will be
undercompressive. For example, if we start with the pair
(bl,br ) = (1.6,0) for which there is no compressive shock,
the solution after a long time forms a compressive shock
(1.6,2.3) and an undercompressive shock (2.3,0). Both move
rightwards, but the compressive shock moves more slowly, so
the region of high slope b = 2.3 gets larger with time; see
Fig. 4 (left).

This particular undercompressive shock (which we call
b0 = 2.3), connecting an undetermined value bl on the left to
a flat surface br = 0 on the right, is important because it arises
spontaneously whenever a surface is initially patterned to have
a compact region with large enough slopes, surrounded by a
flat surface. We have determined via traveling wave solutions
that the maximum value of bl for which there is a compressive
wave connecting it to br = 0 is

bc
0 = 1.257, (6)

and we have found numerically that it arises whenever bl > bc
0.

It was first pointed out theoretically in Chen et al.,12 who also
observed it experimentally in 30 keV gallium on silicon. The
pair (b0,0) is marked with a blue cross in Fig. 3, and the
particular solution shown in the sidebar.

A similar behavior occurs for other pairs; for example
(bl,br ) = (3,−1) evolves to a compressive shock (3,4.3)
moving leftwards and an undercompressive shock (4.3,−1)
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FIG. 4. Solutions to the PDE (2) for different boundary conditions. Left: bl = 1.6, br = 0. Middle: bl = 3, br = −1. Right: bl = 3, br = −2.
Initial condition indicated as a dotted line, solution b(x) after a long time is a solid line. The relative speeds of the steep features of each solution
are indicated by the relative sizes of the adjacent arrows.

moving rightwards. In height coordinates this is an asymmetric
ridge moving to the right. See Fig. 4 (middle).

Qualitatively different behavior occurs for a pair such as
(3,−2). In this case the dynamics selects a combination of
three shocks: in the middle is the doubly undercompressive
shock (4.7,−4.7), which has speed c = 0, and traveling away
on either side are compressive shocks (3,4.7) and (−4.7,

−2). The surface evolves to a stationary knife edge that gets
taller with time. This three-wave structure with the doubly
undercompressive shock in the middle is very robust; a wide
range of boundary conditions give rise to it.

B. Calculus of traveling wave solutions

The above investigation suggests a form of calculus can be
applied to Fig. 3 to determine the long-time solution to the
PDE selected by a given pair of boundary values (bl,br ).

Let us return to the point (bl,br ) = (1.6,0). This is in
a dark-gray region of Fig. 3, where there is no traveling
wave solution, so it must evolve to intermediate values
Y1,Y2, . . . to form several shocks as (1.6,Y1), (Y1,Y2), (Y2,0).
To determine the possible values of Y1,Y2 we do the following.
Put three hypothetical shocks on the figure at X1 = (1.6,0),
X0 = (1.6,1.6), X2 = (0,0). Figure 5 shows this construction.
The shocks from left to right connect as X0,X1,X2. Now, we
want to move the points to put each of them in a red region, but
in such a way that they still represent a sequence of shocks:
The second value of Xi equals the first value of Xi+1, and the
first value of X0 and second value of X2 are fixed to satisfy
the boundary conditions. The points can move as follows: If
X1 moves up (down), then X0 moves left (right) by an equal
amount, and if X1 moves right (left), then X2 moves up (down)
by an equal amount.

It can be seen by examination that the only way that X1 can
move to keep X0, X2 in a red region is right or up, and that X1

must lie on the nearest curve of undercompressive solutions.
It can lie anywhere on the curve from (1.6,0.7) to (2.3,0) and
still keep X0, X2 in a red region. So why does it choose the
extreme point, where X0 = (1.6,2.3), X2 = (0,0)?

To answer this consider the speeds of the resulting shocks.
Because the undercompressive shocks contained on the curve
in question are compressive from the right, characteristics enter
the shock from this direction, so any nonconstant solution to
the right of X1 will eventually be subsumed by it. Therefore
X2 must lie on the diagonal. Indeed, computing the speeds

for the other extreme point, X1 = (1.6,0.7), X0 = (1.6,1.6),
X2 = (0.7,0), shows that c(X1) = 0.9 and c(X2) = 0.5 [see
Eq. (4)], so X1 will catch up to X2 and the latter cannot exist
as a long-time solution.

We have found this behavior generically follows through
for the points to the left of the curve of undercompressive
solutions in the lower right-hand quadrant. However, for
boundary values below the minimum of the curve, such as
the point (3,−2), there are no longer feasible solutions for X1

on the undercompressive curve. In this case X1 moves to the
doubly undercompressive solution (4.7,−4.7). Because this is
undercompressive from both sides, characteristics move away
from it on either side so there can be two shocks surrounding
it: X0 = (3,4.7), X2 = (−4.7,−2).

It can be seen by examining Fig. 3 that the the doubly
undercompressive solution arises for a large set of boundary
conditions, a finding that is consistent with our numerical
experiments.

FIG. 5. (Color online) Constructing a triplet of feasible shocks
(X0,X1,X2) which move so they all lie in a red region, corresponding
to a pair of boundary conditions yielding traveling wave solutions
to (2).
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C. Dynamically creating the doubly undercompressive solution

The fact that the knife edge arises for a large set of boundary
conditions suggests a method for creating sharp features
experimentally: by patterning the surface initially to contain
slopes that steepen to the doubly undercompressive solution.
We expect this solution to arise when the magnitude of the
initial slope is large enough, as shown in Fig. 1. In this section
we determine a criterion on the initial slope that guarantees
the doubly undercompressive solution will emerge for fixed
boundary conditions, and then we demonstrate numerically
that the dynamically evolving case can be partially understood
using the solutions for fixed boundary conditions.

To determine a lower bound on the initial slope, we first
consider a simplified problem that is antisymmetric about x =
0, with fixed boundary conditions bl = −br . By computing
traveling wave solutions along the diagonal bl = −br in Fig. 3,
we determine that the maximum compressive shock occurs at
bl = bc

∗, where

bc
∗ = 1.28. (7)

Next, we solve the governing PDE numerically using an
initial condition containing two equal but oppositely sloped
regions separated by a flat region in between: We can think of
this as identical shocks moving in opposite directions that
collide. As predicted by analysis in Secs. IV A and IV B,
these initial conditions lead to a compressive shock when
bl < bc

∗, but to the doubly undercompressive shock plus two
compressive shocks when bl > bc

∗. Figure 6 shows the time
evolution of one initial condition when b < bc

∗, and two
initial conditions with different slopes when b > bc

∗; both of
these conditions approach the same doubly undercompressive
solution.

What is striking about this is that it provides an amplifi-
cation of the slope of the surface, to a universal value that
depends only on the surface properties. This phenomenon is
the major discovery of this paper.

An argument can be made that, at least transiently, one
need consider only the symmetric case, and in doing so we
relax the criterion on the initial slope even further. When
the sloped regions are initially far apart, they effectively see
a flat surface ahead, so given sufficient initial slopes, they
develop the undercompressive shock b0 at their leading edges.
When these shocks meet, they initially follow the dynamics
appropriate to shocks of slope b0 that collide. Since b0 > bc

∗,
this automatically develops into the doubly undercompressive
shock.

Therefore, we predict that the doubly undercompressive
shock will emerge dynamically when

max{initial magnitude of slope} > bc
0 (8)

(on each side), provided

b0 > bc
∗, (9)

where bc
0 was the minimum value required to develop the

undercompressive shock. Condition (9) is a feature of the
traveling wave landscape that depends on the yield function.
We have found it to hold for all the functions of Yamamura
type that we have investigated (see Sec. V). However, it need

FIG. 6. Time evolution of antisymmetric initial conditions, with
boundary slopes held fixed at (bl,−bl). Time advances from left
to right. Top: Boundary condition bl = 1 < bc

∗. Two compressive
shocks form and approach each other. When they collide, they form
a compressive shock that does not change with time. Compare with
solution (2) in Fig. 3. Middle: Boundary condition bl = 1.8 > bc

∗.
Two undercompressive shocks form and approach each other (each
is trailed by a compressive shock). When they collide, they form
the doubly undercompressive shock and two compressive shocks
that travel away. Bottom: Boundary condition bl = 3 > bc

∗. This also
forms two undercompressive shocks that collide and form the same
doubly undercompressive shock. Only half of each simulation is
shown as the curves are antisymmetric about x = 0.

not be true for general yield functions or smoothing terms: As
a side investigation we have solved the traveling wave problem
with a linearized fourth-order term −B0��b and found that
only certain yield functions satisfy the inequality. Therefore
curvature-dependent evolution is critical to achieving steep
features.

We next demonstrate that the doubly undercompressive
shock can arise dynamically, without fixing the boundary
conditions but by prepatterning the surface. We have found
that criterion (8) applied to the initial patterning is sufficient
to create the doubly undercompressive shock dynamically,
although the length of time for which it exists will depend
on other features of the initial condition such as the length
and initial separation of the sloped regions. Figure 7 shows
the dynamics for one possible experimental setup. The initial
surface is a wide ridge, whose sides have slopes ±3, tapering
to a flat surface at the edges of the domain. Initially the sides
move toward each other, creating the undercompressive shock
from ±b0 to 0 at their leading edges. When they approach there
is a sharp jump in slope from +b0 to −b0. Since b0 > bc

∗, the
system evolves to the doubly undercompressive shock: The
slopes at the jump steepen to ±b∗, forming a steep, knife-edge
shape, while the location of the jump does not change. When
the whole ridge has moved in the knife edge decays rapidly
to zero. It is notable that the doubly undercompressive shock
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FIG. 7. Dynamics of colliding steep features at initial, intermedi-
ate, and near-final times. Top: slope, bottom: height.

evolves quickly enough to exist stably over a period of time
despite the dynamically evolving conditions.

A schematic of the height evolution of a prepatterned
surface illustrating criterion (8) is shown in Fig. 1.

V. OTHER MATERIALS

Thus far we have computed features of the traveling wave
landscape, such as b∗, b0, bc

0, and bc
∗, for a single yield function.

However, the traveling wave landscape will change with the
yield function, which varies with the substrate, ions, and
energy. We have solved for selected features of the landscape
numerically for the family of yield functions compiled by
Yamamura,17 who showed that many experimentally measured
yield functions can be represented using (5) and fitting for f ,
θopt.

As we vary these parameters within experimentally ob-
served bounds, the qualitative features of Fig. 3 are similar
to the case study, but the numbers change. They are most
sensitive to θopt, varying only a little with f . To illustrate the
range of variation, Fig. 8 plots the slope b∗ of the doubly
undercompressive solution and its nondimensional radius of
curvature M versus θopt at f = 2, and shows that the steepest,
sharpest features occur at the largest values of θopt. For
example, 4 keV H on Ni has θopt = 84.2◦, where the slopes are
predicted to be b∗ = 29.

FIG. 8. Solid line: Slope b∗ of the doubly undercompressive
solution for yield functions of form (5), with f = 2. Dashed line:
Coefficient M determining radius of curvature (B0/Y0)1/3/M of this
solution. Inset: Selected doubly undercompressive solutions in height
variable.

This opens up an interesting possibility: to choose or to
engineer a yield function specifically to obtain the desired
radius of curvature. Changing the material in this way opens
the window for making very sharp structures.

VI. SECOND-ORDER TERM D(b)

Our analysis above hinges on the assumption that the
second-order term can be neglected. This is a valid approx-
imation to make when the dynamics select either scales small
enough that the fourth-order term dominates or slopes large
enough that D(b) is small, but in actual experiments this may
or may not be the case. Here we briefly consider the effect of
adding a second-order term.

We include second-order effects in (2) by adding a term
of the form δD̃(b)bxx , where δ = D(0)

LY0
= D(0)

B
1/3
0 Y

2/3
0

is a nondi-

mensional parameter governing the size of this term for a flat
surface, and D̃(b) = D(b)/D(0). We first solve for features
of the traveling wave problem with constant second-order
diffusivity, D̃(b) = δ. As δ increases, bc

∗,b
c
0 increase and b0,

b∗ decrease, until eventually they collide and the nonclassical
shocks no longer exist. This is consistent with results for a
fourth-order thin film model.15

In a more realistic model, we have solved the PDE
(2) numerically with a second-order term obtained from
experiments in Madi et al.,16 whose dimensionless form is

D(b) = δ
1 − b2

1 + b2
exp[−�(

√
1 + b2 − 1)]. (10)

The numerically observed value of b∗ changes extraordinarily
little with δ, by less than 1%. Presumably this is because
D(b) � D(0) when b is large, which is the situation of interest.
However, bc

∗ increases with δ and bc
∗ > b0 when δ � 0.5, so

that colliding two undercompressive shocks no longer leads
to the doubly undercompressive shock. As δ increases the
dynamics become increasingly turbulent, and for δ � 1 we
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have not found evidence of the doubly undercompressive
shock.

We have not attempted to estimate δ for given materials
because the field is in a bit of a paradoxical situation with
respect to the size of this term in the parameter regime in
question. On one hand, Chen et al.12 observed that at 30
keV gallium on silicon, there were undercompressive shocks,
which can happen only when δ is small. At the time that
paper was written, it was believed that the second-order
term was caused by a Sigmund-like sputter erosion-based
mechanism. In the intervening time, Norris et al.18 and Madi
et al.16 have demonstrated that for 1 keV argon on silicon, the
dominant roughening and smoothing mechanism is from the
ion impact-induced redistribution of those atoms which are not
sputtered away, for which there is currently no first principles
theory. Because of this, quantifying D(b) for various systems
and understanding how it changes with various parameters
is still in process,16,18–21 so we are unable to make specific
recommendations about when the approximation δ � 1 is
valid.

We do, however, note that Chen22 contains images showing
that sharp, razor-blade-like structures can emerge on magne-
sium sputtered with 30 keV gallium when prefabricated pits
expand and collide. Combined with the fact that undercom-
pressive shocks were observed experimentally in Chen et al.,12

this makes us optimistic that the doubly undercompressive
shock will also be demonstrated experimentally. A simple test
would be to start with a shallow ridge and see if it steepens to a
sharper ridge; if it does, then the doubly undercompressive
shock can serve as an organizing principle for explaining
self-steepening mechanisms on surfaces.

VII. CONCLUSIONS

We have shown that there is a wide class of initial
conditions that cause an ion sputtered surface to evolve to
a knife-edge-like shape, with very steep slopes and a radius
of curvature much smaller than the minimum wavelength of
the instability leading to sputter rippling. Our analysis hinges
on the existence of traveling wave solutions to the governing
nonlinear partial differential equation, and the fact that when
the smoothening mechanism is fourth order (arising, for exam-
ple, from surface diffusion or surface-confined viscous flow)
these solutions are a discrete set. The knife-edge-like solution
occurs as an isolated point in the space of boundary conditions
and arises from initial slopes that are larger in magnitude
than a material-dependent number bc

0. Because the slopes of
the knife edge are b∗ � bc

0, the initial slopes can be amplified
considerably by the dynamics.

These calculations suggest an entirely new arena for
creating self-organized nanometer-scale structures with an ion
beam: by prepatterning a surface so it evolves to structures with
steep, sharp features when ion sputtered under appropriate
conditions. Our calculations predict that one can achieve
arbitrarily steep, sharp structures by choosing the materials
and energies appropriately.

Although our analysis was restricted to structures that vary
in only a single dimension, we expect it will be possible to
extend this to two-dimensional structures. Ultimately, one
would like to answer the inverse problem: Find a range of

prepatterned surface shapes that evolve to a given design under
uniform irradiation.
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APPENDIX

1. Numerical procedure for traveling wave solutions

Traveling wave solutions to (2) were computed using a
collocation method, as implemented by the function bvp4c
provided by Matlab. This takes an initial guess for the solution
and the grid it is defined on, and iteratively solves a set of
nonlinear algebraic equations to better approximate the true
solution on an updated grid, with boundary conditions.23,24 If
this produces a convergent result, whose residual is smaller
than a desired tolerance level, we consider a solution to exist
for that particular choice of bl,br . The method also allows
us to consider boundary values which vary by including
them as extra variables in the problem. This lets us look for
undercompressive solutions and gives us the particular values
of bl,br as part of the solution. In implementing the method
we choose the length of the interval to be 80 nondimensional
units. To improve the likelihood of finding a solution we use a
continuation procedure, starting with a pair (bl,br ) for which
solution is easy to obtain, and using this to produce an initial
guess for a pair (b′

l ,b
′
r ) slightly perturbed from the original.

To find a doubly undercompressive solution, we restrict
to solutions that are antisymmetric about 0 and solve (3)
on (−∞,0) with right-hand boundary condition S(0) =
0,S ′′(0) = 0. By allowing the left-hand value bl to vary we
obtain a single solution bl = b∗.

Boundaries of regions where solutions exist are estimated
by fixing br at increments of 0.25 and using continuation
on bl . When incrementing bl by an amount smaller than
the tolerance level of the boundary problem solver fails to
produce a solution, we should be near the boundary of the
region containing solutions. We exploit the symmetry of the
problem by combining results from mirror regions to obtain an
improved estimate of the boundaries. Some of the red patches
are possibly larger; these are indicated with a dashed line on
the boundary in Fig. 3.

We have verified these results using a shooting method, as
described in Appendix A2. In particular, this provides evidence
that b∗ is the only doubly undercompressive solution.

2. Shooting method for traveling wave solutions

We used a shooting method to verify the results from our
collocation method describe above. In this vein we attempt to
compute the minimum distance between the unstable manifold
of the left-hand point US(−∞), and the stable manifold of
the right-hand point S(∞) (see text), in a plane dividing the
two points P = {(S,S ′,S ′′) : S = bp}. Here bP is a point in
between bl and br , typically bP = 1

2 (bl + br ). As in Bertozzi
et al.,14 we refer to P as a Poincaré section.
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FIG. 9. (Color online) Contours of dmin at levels 0.01, 0.5, 5, in
black, gray, and light gray lines, respectively. Red (shaded) regions
are the traveling wave solutions found by collocation.

Let us define the following:

d∗
min = min. distance between US(−∞) ∩ P , S(∞) ∩ P,

(11)
dmin = numerically estimated value of d∗

min

Note that a solution to the boundary-value problem exists when
d∗

min = 0.
To compute dmin, we integrated (3) using an explicit ODE

integrator, starting at a distance of δ (=10−5) from (bl(r),0,0),
on the tangent space to the unstable (stable) manifolds at these
points. If the dimension of the particular invariant manifold
is one, this requires two integrations. If the dimension is
two, then the space of initial conditions can be parameterized
with a single variable θ as δ(u1 cos θ + u2 sin θ ), where
u1,u2 are linearly independent, normalized vectors spanning
the tangent space to the manifold at (bl(r),0,0), and we
compute the trajectories for a finite number of evenly spaced
θ values.

We keep track of where each trajectory intersects P and
compute the minimum distance between the two sets of points

on the Poincaré section, as well as the points which achieve,
or come close to, this minimum value. We then refine the grid
about these points (if at least one of the manifolds has two
dimensions) and integrate the new trajectories, continuing in
this manner until the minimum distance converges to some
value dmin or is less than some tolerance level (10−5).

When both manifolds are one-dimensional, this provides
a robust way of measuring how “close” the two initial value
problems come to each other, and hence how close we are to an
actual solution of the boundary-value problem, given bl,br can
vary. When at least one of the manifolds is two-dimensional,
this method does not necessarily converge to the true value
d∗

min; occasionally the manifold changes so rapidly with θ along
the Poincaré section that it is extremely difficult find the value
that comes closest to the other manifold, so that dmin > d∗

min
and in particular actual intersections, where d∗

min = 0, may be
missed. Hence, we cannot unequivocally determine existence
or nonexistence with this method, but when combined with
the collocation method it provides a way to gain confidence in
certain claims.

We computed dmin on a grid with spacing 0.25. Figure 9
shows the contours of dmin, as well as regions where we
have found solutions with the collocation method. The figure
shows good correlation between regions where we have found
solutions (red shading, lines, and star) and regions with low
dmin (dark contour). In particular, it appears that b∗ is the only
doubly undercompressive solution, as comparison with Fig. 3
shows no other local minima of dmin in regions where traveling
waves would be doubly undercompressive.

3. Numerical method to solve PDE (2)

Our numerical method is semi-implicit in time and com-
putes spatial derivatives based on second-order centered
differences. The boundary conditions are b(0) = bl , b(L) =
br , b′′(0) = 0, b′′(L) = 0, where L is the length of the domain.
The time increment was calculated by weighting the solution
at the future time step by a factor θ and the solution at the
present time step by a factor 1 − θ and solving the resulting
nonlinear equations using Newton’s method; usually only one
iteration was needed, and the results were not sensitive to θ .

The semi-implicit time step produces a stable scheme;
however, the discretization creates numerical diffusion which
is proportional25 to �t , and this changes the values of the
undercompressive shocks. Therefore we chose �t small to
control numerical diffusion.
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