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We propose and experimentally test a method to fabricate patterns
of steep, sharp features on surfaces, by exploiting the nonlinear
dynamics of uniformly ion-bombarded surfaces. We show via theory,
simulation, and experiment that the steepest parts of the surface
evolve as one-dimensional curves that move in the normal direction
at constant velocity. The curves are a special solution to the nonlinear
equations that arises spontaneously whenever the initial patterning
on the surface contains slopes larger than a critical value; mathemat-
ically they are traveling waves (shocks) that have the special property
of being undercompressive. We derive the evolution equation for the
curves by considering long-wavelength perturbations to the one-
dimensional traveling wave, using the unusual boundary conditions
required for an undercompressive shock, and we show this equation
accurately describes the evolution of shapes on surfaces, both in
simulations and in experiments. Because evolving a collection of one-
dimensional curves is fast, this equation gives a computationally
efficient and intuitive method for solving the inverse problem of
finding the initial surface so the evolution leads to a desired target
pattern. We illustrate this method by solving for the initial surface
that will produce a lattice of diamonds connected by steep, sharp
ridges, and we experimentally demonstrate the evolution of the
initial surface into the target pattern.
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Fabricating steep, sharp features with desired morphologies on
surfaces is a major challenge of materials science. Certain
methods are available by direct engraving, such as focused ion
beam (FIB) or lithography (1-4), but these require enormous
time and energy. A promising method to efficiently make pat-
terns on a large scale by exploiting dynamics is to erode a surface
with uniform ion bombardment (5-9). A flat surface can become
unstable and develop features such as quantum dots or hexag-
onal patterns (10-17). Such spontaneous pattern growth could
spawn high-throughput methods to manufacture periodic meta-
materials such as optical antenna arrays (18) and the split ring
resonators used in negative refractive index materials and optical
cloaking (19).

However, because linear instabilities are neither small enough
nor amenable enough to control, interest has recently turned to the
potential for nonlinear dynamics to create even steeper, sharper
features (20). Large-amplitude, steep structures are of interest for
3D engineering applications such as micromechanics, micropro-
cessor integration, data storage, and photonic band gap waveguides.
They are also of interest in atom probe tomography, which uses
samples frequently created by FIB ion irradiation (21) and which is
strongly influenced by the geometry of the steep-walled final samples
(22). Experiments and simulations have shown that knife-edge-like
ridges, varying on scales at least an order of magnitude smaller than
those accessible to linear instabilities, can arise spontaneously on
uniformly bombarded surfaces, provided the initial surface contains
slopes beyond a critical value (23, 24). This demonstration suggests
that one may be able to create steep, sharp features by first pre-
patterning a surface on the macroscale—something that is
relatively easy to achieve—and then bombarding it uniformly to
let even steeper, sharper features form spontaneously.

www.pnas.org/cgi/doi/10.1073/pnas.1609315113

In this paper we propose a theory to design patterns on a
surface using their nonlinear dynamics, and we validate our ap-
proach experimentally. We argue that there is a dynamical re-
gime where the full nonlinear dynamics can be approximated
by evolving a collection of one-dimensional curves at constant
speed in the normal direction, and we show this model accurately
describes the experimental behavior of steep-walled pits propa-
gating under uniform ion irradiation approximated via FIB ras-
tering. This model can be used to solve the inverse problem of
determining the initial surface pattern that will evolve under
uniform ion bombardment to a desired target pattern, and as a
demonstration we numerically design and experimentally create
a lattice where the scale of the lattice pattern is many times
smaller than the scale of the initial patterning.

Our model has several advantages over a direct numerical sim-
ulation of the nonlinear equations for surface evolution. First, it can
rapidly determine how a given initial condition will evolve, for ex-
ample by directly evolving the curves or using level set methods
(25, 26), so the inverse problem can also be solved efficiently, for
example using Monte-Carlo methods. Second, the full nonlinear
equations require quantitative information about the macroscopic
effects of uniform ion bombardment, such as the yield function
(atoms ejected per incident ion as a function of angle of incidence)
and the magnitude and type of smoothing physics, and this in-
formation is not always known or easy to obtain (27, 28). Our model
requires knowing only one material-dependent parameter that can
be measured through simple experiments, so measuring the full
yield function and smoothing physics is unnecessary. Finally, this
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method is intuitive, so an approximate guess for the initial pattern
can be made without any sophisticated numerical techniques.

Results and Discussion

Evolving an Initial Condition to Produce a Target Morphology. We
begin by performing numerical simulations of the fully nonlinear,
2D equations for the evolution of the surface height 4(x, y, t) under
uniform ion bombardment, commonly described by the Sigmund
theory of sputter erosion (6). When the surface slope varies over
length scales much larger than the lateral scale over which an ion
deposits its kinetic energy, the sputter integral can be expanded to
yield the following nonlinear partial differential equation (20, 29):

1

The first-order term R(b) is the average velocity of erosion of the
surface as a function of its slope b =|Vk| (or equivalently the angle
of the incoming ion beam). The fourth-order term with magnitude
By is a function of the surface curvature x=V - ((1 +b2)_1/ 2Vh),
which models additional smoothing effects such as Mullins—
Herring surface diffusion (30, 31) or ion-enhanced viscous flow
confined to a thin surface layer (32). Eq. 1 can also include sec-
ond-order (curvature) terms (7, 33), but we neglect these because
the nonlinear dynamics we wish to model can only occur when
these are small (24).

The erosion function R(b) is related to the sputter yield Y (b) by a
constant of proportionality that changes its units from [atoms out/
ions in] to [length/time]. This constant, as well as steep feature
propagation speed, vary with ion flux. Therefore, whereas we mea-
sure simulation progress in unitless simulation time, it is more in-
formative to track experimental progress with area dose, a measure
of ion fluence delivered per area reckoned in a plane parallel to the
average surface. When ion flux is held constant, area dose is pro-
portional to simulation time.

We numerically simulate Eq. 1 using the erosion function for
30-keV Ga* on Si (Materials and Methods) and estimate length
scales for this material combination. Fig. 1 A-C shows simula-
tions that begin with a periodic array of shapes punched out in
the surface. The shapes are initially 2.5 pm apart (centers 5 pm
apart) and are steep at their boundaries with nearly zero slope
elsewhere. As the surface evolves, the steep regions remain steep
whereas their location changes with time. Eventually the steep
regions collide and form ridges that are even steeper, with widths
of ~100 nm. The resulting pattern is a lattice of diamonds con-
nected by steep, narrow ridges.

These ridges were shown in ref. 24 to be a special solution to Eq.
1 that arises whenever steep regions propagating in opposite di-
rections collide. The steepness and radius of curvature of this so-
lution were shown to be fixed numbers that depend on the material,
ion, and energy via R(b), and we expect that certain materials can
achieve much smaller length scales (23). Because identical ridges
arise spontaneously, they are a useful structure to consider for
patterns because they are not sensitive to the initial condition.

To show that we can form a similar lattice of knife-edge ridges
experimentally, we use FIB to mill four pits matching the initial
shape used in simulations and then irradiate under repeated
boustrophedonic FIB rastering, delivering a low dose on each pass
to approximate uniform irradiation, as described in Materials and
Methods. Due to discrepancies in pit wall propagation speed
(Supporting Information, Speed Calculations), we milled the initial
pits with centers 4.4 pum apart—closer than in simulations. Irra-
diation continued until the pits impinged (Fig. 1 D and E). The
resulting structure is close to that designed through our method
and predicted by the simulations, successfully demonstrating the
formation of knife-edge ridges under uniform ion irradiation. One
difference from the simulations worth pointing out is that when
pits evolved within 200 nm of each other the pit rim closest to the
adjacent pit accelerated and “reached out” to the adjacent pits.
These behaviors caused impingement to occur both sooner than
expected and over a smaller length of the rim. Bombardment was

A

Fig. 1. (A-C) Numerical simulation of surface height evolution under uniform ion bombardment (Eq. 1), at area doses 0 nC/um?, 3 nC/um?, and 6 nC/pm?

(simulation times 0, 0.8, and 1.6) Pits initially spaced O(1)um apart collide and form ridges with widths O(100) nm. By changing the initial pattern one can
create a large variety of patterns made of these steep, sharp ridges. (D) SEM image of the fabricated initial condition predicted to evolve into knife-edge
ridges, and (E) the knife-edge ridges formed after ion irradiation in the FIB, both imaged at 54° off-normal. (Scale bars, 1 pm.)
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continued after this impingement to extend the lateral dimensions
of the knife edges, and so the knife edge evolved into a curved
ridge. Indeed, our simulations show that if bombardment con-
tinues beyond the moment of impingement, the knife-edge ridges
may evolve into the curved shaped similar to those observed in
experiment (Fig. S1).

One-Dimensional Curve Evolution Equations. We designed the pattern
of ridges by solving an inverse problem for the initial conditions,
and we now explain these calculations. The basic observation is
that we can draw a curve through the steepest parts of the surface
at every time step and watch the curve evolve in time. Our goal is
to derive an evolution equation for the curve using only the curve’s
intrinsic, one-dimensional geometry, and not any information
away from the region of high gradient.

To look for such an equation we recall the theory developed in
ref. 23. This theory showed that Eq. 1 has a particular traveling
wave solution for the slope that is invariant in one horizontal di-
mension, that is, of the form 4, =s(x —ct), that acts as an attractor
for the dynamics: If a surface is patterned initially to have slopes
above a critical value, then the surface steepens and locally evolves
to that traveling wave. This wave is called undercompressive in the
mathematical literature (34-36) because it has the nonclassical
property that information can propagate away from it. In our
system it is identifiable because it connects a steep region with
constant slope by =s(—o0) to a flat region with slope 0=s(c0),
and it propagates at constant speed ¢ = (R(by) —R(0))/(bo —0),
where the constants by, c depend on the material, ion, and en-
ergy via R(b) but not on the initial condition. When we extract
the slope and speed in the simulations of shapes such as in Fig. 1
we find that they are close to by, c, suggesting that the surface
slope can be locally approximated as a collection of under-
compressive traveling waves with slowly varying phase shifts in
the transverse direction.

To understand how this collection evolves we consider two
different theories. Theory 1 simply advects curves in the normal
direction with speed c. If the curve is parameterized by a as
q(a,t) = (x(a,t),y(a, 1)), it evolves according to

dg _ .
2= [2]

where 7 =%L /|%] is the unit normal to the curve. This theory
requires only one parameter, the wave speed ¢, which can be
measured by simple experiments. For example, one can engrave
a circular pit and measure the rate of change of its radius, as in
ref. 24. Theory 1 is a natural heuristic and is expected to be
valid when the steep parts of the surface form a curve that is
nearly straight, so it can be treated locally as a one-dimensional
traveling wave.

Theory 2 seeks to describe the evolution of transverse per-
turbations to a one-dimensional traveling wave, by looking for an
asymptotically consistent solution to the nonlinear, 2D equa-
tions. We start by looking for a solution whose slope has the form

hy=s(x—ct+w(y,t)) +eu(x —ct,y,t) + O(€?). [3]
We assume the scalings d, ~ O(e'/?), 9, ~O(e), with € < 1. We
substitute this ansatz into the x-derivative of Eq. 1 and perform
a multiscale asymptotic expansion (37). At leading order is the
equation for s, which is satisfied by construction. The O(e)
equation is

u[+£u=a1(s)l//[+a2(s)y/y2 +a3(8)wyy, +as(s) Wy, [4]

where a;(s) are functions of the traveling wave (Eqs. S5-S8) and
the linear operator L is

Perkinson et al.

Lu=0,((R'—c)u)

+Bo |0°n(fa0; (sf )u) + 0 (faﬁ (Gﬁ,s2 + fs>u)ﬂ [5]

We write n=x—ct, f(b) = (1 +b*)™"% f4(b) = L £ (b), and all func-
tions are evaluated at s(n). We have included the term propor-
tional to y,,,, from the O(€?) equation because it is sometimes
required to smooth (Supporting Information, Which Terms to In-
clude in Theory 2?).

The left-hand side of Eq. 4 depends only on the fast variables
n,t, sO we can integrate over these to derive a solvability condi-
tion. Suppose there is a function z(y7) such that £*z =0, where £*
is the adjoint of £ with respect to the L, -inner product (-,-)
li.e., it satisfies [wu(Lv)dx= [ (L u)vdx for all u,v with the ap-
propriate boundary conditions]. Taking the inner product with
Eq. 4 and requiring u to be bounded shows that (z, RHS) =0,
where RHS is the right-hand side of the equation. Therefore, the
phase will evolve on the slow timescale as

v+ Czl//y2 + 3y, + Caryyy, =0, [6]

where ¢; = (m,a;(s))/(m,a1(s)).

To find = requires solving £*z=0 with the appropriate
boundary conditions, which are z(—o0)=0, z(c0)=1 for the
undercompressive traveling wave (35, 38—40). Using these one can
compute 7 numerically, and then the constants can be found by
numerical integration. The condition of decay at —co is unusual
and is what makes this multiscale analysis novel. The condition
arises to control information that can propagate away from the
traveling wave on its undercompressive side (Supporting Informa-
tion, Boundary Conditions for the Undercompressive Wave).

Eq. 6 forms the basis of Theory 2. It demonstrates rigorously
that the nonlinear dynamics of an ion-bombarded surface can be
approximated (for long-wavelength pertubations) as the evolu-
tion of a collection of curves on the surface, each one propa-
gating at constant speed c¢ in a certain direction and changing
shape about this direction according to Eq. 6. The theory re-
quires four parameters: c3,c3,cs, and c. These can be calculated
numerically if the erosion rate R(b) and the magnitude of the
fourth-order term By are known for a given material. If they are
not known, they could be extracted from experiments that
measure the evolution of different shapes.

Note that Theory 2 considers perturbations about a horizontal
reference line, so it relies on a particular coordinate system.
Theory 1, however, is intrinsic: It depends only on the local ge-
ometry of the traveling wave front. We expect that one could

3
x 2
<
0 / —Simulation
= =Theory 1
10 —T— T T Y e Theory 2
4 6 8 10

Fig. 2. Numerical tests comparing the curve evolution Egs. 2 and 6 to sim-
ulations of the full dynamics (Eq. 1). (Left) Initial surface slope hy(x,y,0)=
s(x+sin(32y)). (Right) Curve extracted from full simulation (solid line), curve
predicted by Eq. 2 (blue dashed line), and curve predicted by Eq. 6 (red dotted line),
at times 2, 7.5, and 12 (corresponding to area doses 7.5, 28.125, and 45 nC/pmz).
The curves at each different time have been plotted at 1/10 the actual
separation in the vertical direction.
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Fig. 3. (A) Initial milled “clover” pit and (B) milled pit after an area dose
30 nC/um? imaged under SEM at 30° off-normal. (Scale bars, 2 ym and identical.)

derive Theory 1 from the governing Eq. 1 by considering a slowly
varying traveling wave, and additionally that one could derive the
next-order corrections to Eq. 2 as we have done in Theory 2. We
do not do this here because, as we will show, the difference
between the predictions of the two theories is so small as to be
undetectable experimentally, but this would be an interesting
question for future analysis.

Comparing Theories, Simulations, and Experiments. To test how well
Egs. 2 and 6 describe the propagation of steep features, we
compared them with numerical simulations of the full 2D equa-
tions (Eq. 1). We started with a traveling wave computed as a
steady solution to the discretized version of Eq. 1, applied a si-
nusoidal perturbation to the surface slope in the transverse di-
rection, evolved this surface numerically, and identified the curve
by the maximum of |A| as a function of y at each timestep. We
compared this curve to numerical simulations of Egs. 2 and 6 with
the same sinusoidal initial condition (Materials and Methods).

Fig. 2 shows the three curves at different times. The curves
predicted by the theories agree extremely well with the curve
extracted from the simulations. This agreement is destroyed
when the parameters are changed from their predicted values,
so it is not an accident. The small discrepancies between theo-
retical predictions and simulations are thought to come from
two sources: numerical discretization of the 2D equations and
higher-order asymptotic corrections to the theoretical curves. It
is notable that the curves predicted by both theories are also
extremely close to each other, showing that although they make
different kinds of approximations they may be used roughly in-
terchangeably. Therefore, Theory 1 should be preferred under
the conditions investigated here, because it is simpler.

We then compared experimental pit propagation to the pre-
dictions of Theories 1 and 2. We started with a clover-shaped hole,
formed by milling four overlapping circular pits (Fig. 3) with ra-
dius 2.9 pm, centered at (+2.4 pm, +2.4 um). A fifth pit with radius
1.5 pm was milled at the origin to remove the extra material not
removed by the other four pits. All pits were milled in parallel to
minimize the effects of Si redistribution on pit walls. The initial
and final pit morphologies, imaged using SEM at 30 off-normal,
are shown in Fig. 3. The horizontal pit width expands from
10.8 pm to 15.7 ym after an area dose of 30 nC/pm?* Ga*.

We simulated the evolution of a curve using Eqs. 2 and 6 with
initial condition set to the boundary of the clover-shaped hole. We
fit the propagation speed ¢ to that observed experimentally, be-
cause we were unable to match it quantitatively from first princi-
ples (Supporting Information, Speed Calculations). The simulated
curves are overlaid on the real-time FIB images for comparison
and shown after an area dose of 0.07 nC/pmz, 15.00 nC/pmz, and
30.00 nC/um? in Fig. 4. Both simulations agree equally well with
experiment, overlapping at the pit walls with greatest radius of

11428 | www.pnas.org/cgi/doi/10.1073/pnas.1609315113

curvature. At the four “kinks” with tighter radius of curvature, the
simulated curves vary from experiment by an average of 0.1 pm.
Both models could be used essentially indistinguishably in these
experimental systems.

Solving the Inverse Problem. Our numerical simulations and ex-
perimental tests show that either Eq. 2 or Eq. 6 can be used to
predict the propagation of steep regions on the surface. These are
intuitive equations that make it easy to sketch by hand an ap-
proximate initial condition for a surface that evolves under bom-
bardment to a given final pattern. In addition, because evolving a
collection of curves is fast, the inverse problem can be efficiently
solved more precisely by numerical methods, for example by
Monte-Carlo simulations. To illustrate, we explain how we
designed the lattice in Fig. 14. Our target pattern is a periodic
array of tiles shown in Fig. 54. The black pixels are regions where
we wish the surface to be elevated, where the borders are intended
to be the knife-edge ridges. We will make this pattern using
a periodic array of curves, each of the polar form r(0)=
ro(1+Re{d> zg"jkmwke"k"}), where {wy }jm k,, Are parameters to
be determined. We set k., = 8 and require the pattern to be formed
at a fixed simulation time 7. These restrictions do not come from
realistic experimental constraints, but rather are intended to illus-
trate the more general principle that one can optimize over a con-
strained set of initial conditions.

We then used Monte-Carlo simulations to find the initial condi-
tions that lead to the desired pattern. At each Monte-Carlo step we
varied one parameter, solved Eq. 6 up to time 7, and computed the
cost as the sum of the absolute discrepancy between the set of pixels
lying outside each closed curve and the target pattern. We discarded
moves that increased the cost with a cost-dependent probability. Fig.
5B shows the optimal initial condition after a large number of
Monte-Carlo steps (blue) and the final curve that it evolves to (red).
Fig. 1 A-C shows the evolution of this initial condition with a sim-
ulation of Eq. 1; again there is excellent agreement.

Conclusion

We have introduced a method to make steep, sharp patterns on
surfaces by prepatterning the surface so it dynamically evolves
under uniform bombardment to something that is much smaller
in scale and more difficult to make directly. Our method is based
on the demonstration that for certain materials, ions, and ener-
gies the steep parts of the surface evolve as one-dimensional
curves that propagate at a constant speed in the normal di-
rection. This simplification agrees extremely well with simula-
tions of the full nonlinear dynamics, and over large enough scales
it also agrees with experimental measurements of the evolution
of steep-walled pits under rastered FIB irradiation. On small
scales, such as when steep features approach each other to form
sharp ridges, the theory is not expected to apply because the
governing equations are based on a small-curvature approxima-
tion, and indeed on these scales we observed several phenomena

Dose = 0.07 nC/um? Dose = 15.00 nC/um? Dose = 30.00 nC/um?

Fig. 4. The evolution of the clover-shaped pit under homogeneous FIB
rastering of the entire imaged area, for irradiation doses indicated. Theo-
retical predictions using Egs. 2 (blue) and 6 (red) are superimposed.

Perkinson et al.
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Fig. 5. (A) Target pattern used to design the lattice in Fig. 1, where black
pixels are elevated regions. (B) Initial condition with lowest cost (blue) and
curve it evolves to (red). The cost of this initial condition is the sum of the
number of white pixels lying outside the red curve, plus the number of black
pixels lying inside it.

that we do not yet understand. In addition, we were unable to
quantitatively predict the speed of the curve from first principles,
but it is easy to measure and then incorporate into the theory.
Therefore, we propose that this method of evolving one-dimensional
curves may be used as a first approximation to determining a sur-
face’s final structure after uniform bombardment.

Evolving curves is fast, so it naturally leads to efficient meth-
ods to solve the inverse problem of determining how to pattern
the surface initially so it evolves to a desired target structure. We
showed how to make a simple lattice connecting diamonds with
steep ridges, but one can imagine making more complex patterns,
for example by starting with several different shapes, nonclosed
curves, bumps instead of pits, or undulating topography, and also
by allowing the curves to continue evolving once they intersect, to
form gaps. The space of possibilities is large and we expect that
further understanding of the nonlinear dynamics of ion-bombarded
surfaces will lead to new methods to invent and fabricate materials.

Materials and Methods

Experimental Methods. Samples were polished (001) Si wafers from Virginia
Semiconductor, Inc. and were irradiated using a ZEISS NVision 40 FIB using
NanoPatterning and Visualization Engine (NPVE) software. Samples were
affixed to aluminum sample stubs using silver paste, and dust was removed
using an air jet before loading into the FIB. The SEM beam was switched off
during FIB irradiation to avoid the surface carbon contamination typical of
SEM imaging. The ion beam was 30 keV Ga*, with a current of 1.5 nA, beam
diameter 200 nm, center-to-center dot spacing 100 nm, and dwell time 1.0 ps.
Steep-walled pits were milled by rastering the beam repeatedly, each time
delivering a small dose to the pit area and sputtering away a thin layer of Si.
The beam was rastered over the milling area at least 10,000 times to create
each pit, ensuring that the effects of nonuniform Si redistribution were min-
imized. Circular pits were created by rastering the beam in circles from the
center outward to the outer rim to create a maximally clean, steep pit wall.
Circular pits were overlapped to form the “clover” shapes. To cause pit evo-
lution, a square bombardment area was chosen to overlap the pits. The same
1.5-nA, 30-keV FIB beam was then repeatedly rastered over this area in a
double serpentine (boustrophedonic followed by its time-reverse) scan, de-
livering a small dose in each pass to approximate uniform irradiation. A depth
of ~0.5 nm of material was sputtered away with each pass of the beam. Im-
ages of the pit shape were captured during irradiation using FIB imaging using

. Vasile MJ, Niu Z, Nassar R, Zhang W, Liu S (1997) Focused ion beam milling: Depth
control for three-dimensional microfabrication. J Vac Sci Technol B 15(6):2350-2354.
2. Adams D, Vasile M, Mayer T, Hodges V (2003) Focused ion beam milling of diamond:
Effects of H,O on yield, surface morphology and microstructure. J Vac Sci Technol B
21(6):2334-2343.
3. Li J, et al. (2001) lon-beam sculpting at nanometre length scales. Nature 412(6843):
166-169.
4. Stein D, Li J, Golovchenko JA (2002) lon-beam sculpting time scales. Phys Rev Lett
89(27):276106.
. Sigmund P (1969) Theory of sputtering. I. Sputtering yield of amorphous and poly-
crystalline targets. Phys Rev 184(2):383-416.
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the secondary electron (SE2) detector. Initial and final morphology were im-
aged using SEM.

We found that the pit wall propagation rate was slower than the theo-
retically predicted rate; to counteract this discrepancy and ensure impinge-
ment occurred at the correct moment during pit evolution, the initial pits
were milled closer than directed by the simulations.

Numerical Methods. All numerical simulations were performed using an
erosion function for 30 keV Ga* on Si, found in ref. 20 to be

VITh?
R(b) =R(0) Wi T

62/62 +32/62_2(m_1)}'

XeXp{ 2040572 T 2

[71

with parameters a/o=2.04, u/c=0.658, and £=0.0462.

To simulate Eq. 1, we nondimensionalized the equation by scaling lengths
by L=(Bo/Ro)"/>, times by T =L/Rq, and the yield function by R(b) — R(b)/R,
where Ry =R(0). We then used a nondimensional parameter By =0.02 so we
could simulate scales much large than the width of the traveling wave. We
used a semiimplicit numerical method introduced in ref. 24. The discretiza-
tion changes the undercompressive slope and speed from their theoretical
nondimensional values of bg=3.89, c=1.73 to by =3.45, c=1.84. We used
the numerical values in Eqs. 2 and 6 when comparing to simulations.

We simulated Eq. 6 using the same semiimplicit method as ref. 24 but
applied to a one-dimensional equation. For radial pits we assumed the phase
w was a perturbation to the radius r(t) so changed to radial coordinates by
making the substitution 9, — r~'9,. Coefficients ¢; were calculated numeri-
cally by first computing the undercompressive traveling wave solution s(z)
using MATLAB's bvp solver then computing a;(s) using centered differences
for the derivatives, and finally computing z(y) as the second element in the
null space of the numerically discretized version of £ in Eq. 5 (the first ele-
ment of the discretized operator is always constant.) We performed an af-
fine transformation on z to ensure it had the correct boundary conditions
because these are not required for the discretized operator. The traveling wave
and coefficients were calculated for the nondimensional equation and were
redimensionalized using By = 0.02 to compare with simulations and experiments.
The nondimensional values were ¢, =0.866, ¢z =-0.245, and ¢;=0.231. To
redimensionalize we multiply ¢; by L/T =Ry, c3 by LZ/T=R§/3B:,/3, and ¢, by
L*/T = B, (note that y has units of length). For the experiments, we do not know
the true value of By, but as long as it is small it makes little difference to the
curve dynamics.

We simulated Eq. 2 by discretizing the curve, calculating tangent vectors
with centered differences, and updating each point on the curve according
to Eq. 2. To prevent the curve from self-intersecting we added a small term
exq to the right-hand side, where «; is the curvature vector, calculated using
centered differences on the normalized tangent vectors. When the mini-
mum separation between the points parameterizing the curve dropped
below a threshhold we reparameterized, by linear interpolation. This step
provides a smoothing that in some cases was sufficient to prevent the curve
from self-intersecting, so we could use € = 0. Otherwise, we chose e=1x 1075.
This value was small enough that the evolution was indistinguishable by eye
from a curve that evolves with e =0 over the regions that have not yet self-
intersected.
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Speed Calculations

According to the theory, the speed ¢ of the curves is uniquely de-
termined by the yield curve and the type of smoothing physics (but
not its magnitude). We compared theory to experiments, starting
from the previously measured yield curve and our best knowledge
of the smoothing physics, believed to be surface diffusion.

In Fig. 4, shocks were measured moving 80 nm over a delivered
area dose of 1 nC/um?. For the flux used in that experiment, this
area dose corresponds to a time of 602 s. Thus, the experimental
shock propagation speed is found to be 80 nm/602 s = 0.13 nm/s.

The shock speed is theoretically given as ¢ = (R(by) —R(0))/
(bp—0) and depends on the fixed slope by and the erosion ve-
locities R(bg) and R(0). The slope is by =3.89 as described by
Chen et al. (20). Theoretical values for the erosion velocities R(b)
can be derived using the sputter yield Y (b), a measure of atoms
sputtered away from the surface per incident ion, by changing
dimensions. The sputter yield for normal incidence ions, Y (0) =
2.78, is found using SRIM simulations and reported by Giannuzzi
and Stevie (41), which along with the equation for the angular
dependence of the normalized sputter yield modified by the em-
pirical Yamamura correction factor (42, 43) yields a value of
Y (bo) =21.5. The dimensional erosion velocities can be calculated
using these sputter yields and the atomic volume of silicon,
2.00x107% m

(0)= 602 s 1nC ions in
—29 3 18,,m3 3
w (FO0X1077 7y (10Fum™y (A0°0mY o oo
atoms out 1 m? 1 pm

1 nC/pm? /6.24x10° ions in\ /21.5 atoms out
602 s 1 nC ions in

o 2.00x107% m?\ /10'® pm3\ /10° nm
atoms out 1m3 1 pm

=4.456 nm/s.

_1nC/pm? (6.24>< 10° ions in> (2.78 atoms out)

R(by=3.89)=

The shock speed from theory is thus ¢ = (4.456 nm/s — 0.576 nm/s)/
(3.89 —0) =0.997 nmy/s, a factor of 8 larger than that measured from
experiment.

This discrepancy means that either there is something wrong
with the yield curve or there is smoothing physics that is not yet
incorporated in the model. We do not understand this discrep-
ancy and leave it as a question for future research. Note, however,
that this discrepancy is not important for the theory in this paper,
because the theory only requires that the speed and slope be
uniquely selected. We can simply measure the shock front ve-
locity by evolving circular pits and use this measured velocity to
evolve shapes.

Knife-Edge Ridge Curving After Initial Formation

Simulation and experiment both demonstrate that knife-edge
ridges become curved if irradiation continues after the initial
impingement of steep features, as shown in Fig. S1. The shape of
the wall, with a central high point, arises due to the slight cur-
vature remaining in the shape of the propagating walls at the
moment of impingement, which causes the midpoint of the ridge
to form later than the rest of the ridge. This central high point is
absent from the ridges shown in Fig. 1E because initial pits were

Perkinson et al. www.pnas.org/cgi/content/short/1609315113

spaced further apart, resulting in a more uniformly round shape
at the moment of bombardment. Furthermore, because the pits
“reached out” to each other when they evolved within 200 nm of
each other, the center of the ridge formed first, thus removing
the source of the central high point.

Detailed Multiscale Calculations

In this section we record the details of the multiscale expansion used to
derive Eq. 6, the basis of Theory 2. We work in the frame of refer-
ence of the traveling wave by defining # =x — ct. The y-derivative of
Eg. 1is

(hy),+ (R(b)), = chyy +Boo,V-(f (b)VV-(f(b) Vh)), [S1]

with f(b) = (1+b%)7/%, b=|Vh|=, /h2 +h2. We make the ansatz
h=S(x—ct+¥(y,1)) +ho(t) + ey Yy + .., where s(m)=S"(n)
is the traveling wave solution, and assume the scalings 0; ~ O(e),
a, ~O(e'?).

The O(1) and O(e) parts of various terms are shown in the
table below. The fourth-order term has been broken up by first
calculating k(b) =V-(f(b)Vh) =0,(fh,) + 9,(fh,) and then calcu-
lating m(b) =0, V-(f(b) Vk(b)).

To distinguish between various derivatives, we write a subscript
“d” when we mean the pointwise derivative of a function,with no
chain rule involved, that is, fy(s(n)) =%fls(,. We write a prime
symbol to mean derivative with respect to #, that is, f'(s)=
fa(s)s'(n). All functions are evaluated at s.

o(1) 0O(e'/?) O(e)
h S+ ho (t) h1
ht S+%h0 Sl[/t+h‘|,t
h” ) h1,y,
h'/'l s’ h1.vm
hy Syy
hy, 1//55’ + sy,
b s Iswl+hi,
f(b) f(s) fd(%s%z,+h1,n)
f, f'y,
(Rb)),  (RG)) (1ReS) W2 + (Ry()) P, + Rabr
k(b) (fs)’ 0y [(fas+1) h1 al+swyy + (3fas® +15) v}
% )"w,

m(b) (f(fs)")” = 0y (foka,y +F1Ko,y) + 9,9y (foko,y)

=y, - (F(15)") +(f5)")

2 (as(F5)") + (F(F5)")”
+(F(fs'))" + (f(3as?)")")

+ (F((fas+f)ha,)")" + (fa(fs)"ha,y)"

Some auxiliary calculations are given below:

fokm = f‘)ml[(fds"' f)h1 v] + f(fs) Yy + f(1fd52 + fS)
fy I((),,7 1de(fS)” 2 4 fd(fS) "hy n
dy (foko,y) (f(fs)”)’ ! +1(fs)"y,,

Collecting up terms gives the O(1) equation

fm(f )0 (f(5) ) (R(s))" —cs'=0. [S2]
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This equation is satisfied by construction, because s(x) is as-

sumed to be a solution.
Next we collect up terms for the O(e) equation, and also include
the term for y,,,,, from the O(e?) equation. We obtain, with u =h :
u+ Lu=ai(s)y, +a2(s)1;/y2 +a3(8)wyy, +as(s) Wy, [S3]

The linear operator is

Lu=((Ra=c)u) +Bo(faf)u) + (F((fas+£) ) |, 1841
and the coefficients are

ai(s)=s’ [S5]

e T ()

[S6]
as(s) =Bo[(FR)") + (F(5) S (7]
as(s)=Bo(fs)". [S8]

Boundary Conditions for the Undercompressive Wave
We elaborate on the boundary conditions used in the solvability
condition in the paragraph following Eq. 6. These were justified
rigorously in ref. 35, but we include a heuristic version of the
argument here for completeness, treating all possible types of
traveling wave solutions to Eq. 1.

A general one-dimensional traveling wave solution has the
form A, =s(x —ct) and solves

1 s’ \
¢(s—b;) — (R(s) = R(b)) - By ( s <(1+82)3/2>) )

[89]

with boundary conditions s(—o0) = by, s(+o0) =b,, where b, b, are
parameters (23). The wave speed is found by integrating from —oco
to +oo to be ¢ = (R(b,) —R(by))/ (b, — by). There are three types of
waves, characterized by the relation between ¢ and the speed
R'(byy) of information propagation on either side of the wave:

e A compressive wave has R'(b;) >c¢>R’'(b,), so that informa-
tion propagates into the wave from both sides.

e An undercompressive wave has R'(b;)(c)R'(b,) or R'(b;)>
¢ <R'(by), so that information propagates in on one side and
away on the other.

e A doubly undercompressive wave has R’(b;) <c <R'(b,), so
that information propagates away on both sides.

A useful way of identifying the type of wave is by the dimensions
of the invariant manifolds at the endpoints (23, 34). Because
Eq. S9 is third-order, a traveling wave can be thought of as
a trajectory (s,s’,s") in R® connecting point (b;,0,0) to point
(br,0,0). It must lie in the intersection of the unstable manifold at
n=—o0 [written US(—o0)] and the stable manifold at 5 =-+oc0
[written S(oo)]. Linearizing Eq. S9 and looking for exponentially
growing modes e’ shows that 4 occ — R’ (by)), s0 US(—o0) is
2D when ¢ < R’(b;) and one-dimensional otherwise, and S(o0) is
2D when ¢ > R’(b,) and one-dimensional otherwise. Therefore, a
compressive wave occurs when the two invariant manifolds are
2D, an undercompressive wave when one is one-dimensional and

Perkinson et al. www.pnas.org/cgi/content/short/1609315113

the other is 2D, and a doubly undercompressive wave when both
are one-dimensional.

To determine the boundary conditions for the equation
L7 =0, we analyze the left and right eigenfunctions of the linear
operator £. We have that £s’ =0, because this is simply the lin-
earization of Eq. S9. Therefore, 0 is an eigenvalue of £ with right
eigenfunction s’, so there is a corresponding left eigenfunction n
such that (x,s’) = 1. To find the boundary conditions that make this
normalization possible, we perturb the operator as L5=L+6L;
and suppose it is analytic at the origin, so that the eigenvalues and
eigenfunctions also have a perturbation expansion as*

bs=h+Pp  +Ps+ -, ms=mAOm M+ -,

[S10]

de=0+80 +8 M+
Here ¢; is the right eigenfunction of Ls, z5 is the left eigenfunc-
tion, and As is the eigenvalue. £* will have the same leading-
order boundary conditions as £, which follow by considering
the growth of ¢, ms near +oco and the condition (¢, 75) < co.
Consider each case in turn:

e Compressive: Then US(—0), S(oo0) are both 2D, so generically
they still intersect in a trajectory when perturbed. Therefore, ¢
decays exponentially on both sides, so 75 can grow on both sides.
Requiring it to be bounded implies |z(—o0)|, |z(o0)| < const.

In this case the solution to £z = 0 is z = const; this solution is what
one typically expects, for example for periodic traveling waves (e.g.,
refs. 44 and 45). The constants in Eq. 6 are computed analytically as

c1=(b-=bi), c2=Ru(b:)b, —Ra(bi)bs,
&3=0, ca=f>(b;)b, ~f*(br)br,

(m,a;(s)).

e Undercompressive: If one of the invariant manifolds is one-
dimensional, then generically a perturbation to the equation will
destroy the intersection. If /S(—o0) is one-dimensional, then ¢;
will grow exponentially on the left, so 75 must decay exponen-
tially on the left to satisty (¢, #) < co. Requiring it to be bounded
implies the boundary conditions z(—o0) =0, z(c0) =const; the
constant can be chosen without loss of generality to be 1.

e Doubly undercompressive: A similar discussion to the under-

compressive case implies the boundary conditions are z(—o0) =0,
7(00) =0.

[S11]

where ¢; =

Which Terms to Include in Theory 2?

Here, we justify including a fourth-order term cqy,,,, in Eq. 6.
The multiscale expansion to O(e) would include only the terms
czy/ cap,,. We have found that the viscous term 3y is some-
times very small—for a compressive wave c¢3 = 0 (this is explained
in Supporting Information, Boundary Conditions for the Under-
compressive Wave), and for an undercompressive wave we have found
that by varying R(b) the magnitude of ¢3 can sometimes be very small.
In addition there is no guarantee that the sign is positive. With no
viscous or fourth-order term, there is no smoothing mechanism: Eq. 6 is
a Hamilton-Jacobi equation that advects y, while causing it to sharpen
until its derivatives blow up. Therefore, smaller length scales are created
and terms from the second-order equation will become as important as
those in the first-order equation in the regions of high gradient.
Which terms will be the first to become large? To answer this
question, we proceed as in a boundary-layer analysis and seek the
largest length scale L(e) such that at least one higher-order term
becomes O(e) under the scaling y = (L(e)) 'y In introducing this

*Technically this operator as defined is not analytic at 0, but it can be made analytic by an
appropriate change of variables; see ref. 35.
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new scale we assume that y, maintains its original magnitude,
that is, v, ~ O(€'/?), but that its derivatives can become large due
to the Hamilton—Jacobi dynamics. We look at the terms in the
O(€?) equation, which has the form®

Vit Lv = (W + Oy + Owg, + Oy, + (g
+ ((')u)qu2+ (Vgryy + (Vgypry + (')urmnr/‘/’yz [S12]

gt ((')/””y)”‘/’y + (()uz)q + (Jtkppy-

%
pd
=y

Eq. $12 is the expansion using a linearized fourth-order term « A2h; the expansion for
the full nonlinear smoothing is similar but has more terms.

Here, v is the O(€?) perturbation to %, and (-) represents some
function of s(). Somewhat surprisingly, the right-hand side in-
cludes terms proportional to u(). For a compressive wave, the
coefficients of these terms after integrating over the fast vari-
ables are ¢; =0, but for a noncompressive wave the perturbations
evolve nonlinearly in general (38).

By applying the new scaling to each of the terms, we
find that when L(e)=€'/ then v, — ;. ~e/? 31/ =¢

but that all other terms are higher-order. Therefore, we
include this term and obtain a well-posed curve evolution
equation: Smaller scales can be created by the Hamilton—
Jacobi dynamics, but these are subsequently suppressed by
the fourth-order smoothing before other terms become im-
portant.

Fig. S1. (Left) Simulated knife-edge ridge behavior if irradiation continues after steep feature impingement. The initial hole had a nondimensional depth of

—4, and the simulation was run until simulation time 1.8. (Right) SEM image of curved pit walls resulting from irradiation after steep feature impingement,
viewed at 30° off-normal. Initial pits were milled with centers 3.4 pm apart and irradiated with an area dose of 1.2 nC/um?. (Scale bar, 2 pm.)
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Designer shocks for carving out microscale

surface morphologies

Andrea L. Bertozzi™!

Shockwaves are propagating disturbances with a
long history of study in gas dynamics, fluid dynamics,
and astrophysics. We also see examples of shocks
in everyday life such as a traffic jam, in which the
oncoming traffic has much lower density than the cars
within the traffic jam.

A classical compression wave involves propagation
of a discontinuity in which information is absorbed
from both sides in the shock layer. Undercompressive
shocks are more unusual; they have special properties,
including the transfer of information through the
shock and often different stability properties than
their compressive cousins. In the past decade, under-
compressive waves have been studied in microscale
and nanoscale applications in which surface forces
dominate the physics in the shock layer. These forces
can permit the existence of undercompressive waves,
and their utility is just now coming to fruition. In PNAS,
Perkinson et al. (1) demonstrate how to use undercom-
pressive shocks in ion-bombarded surfaces to create
patterns with steep ridges on a micrometer scale.

The traffic jam example is one that can be mod-
eled with a simple 1D, first-order, nonlinear wave
equation, or “conservation law,” introduced in the
mid-1950s (2, 3):

us+f(u), =0. [11

Here, u is the material being transported in the di-
rection x and fis the flux of the material. Ashockis a
solution to such an equation with a discontinuity in
u that travels with speed s given by the Rankine—
Hugoniot jump condition:

_ f(u) —f(ug)
up—Uugr
Such models can be solved exactly for any choice
of states u; and ug on the left and right of the dis-
continuity. All such shockwaves are compressive,
meaning that they satisfy an entropy condition:
The speed s of the shock is faster than the charac-
teristics speed f'(ug) ahead of it and slower than the
speed f'(u;) behind it. It was traditionally thought

that any physical process described by such a simple
1D model could have only compressive shocks.
This fact can be proved rigorously in the case
where the physics in the shock layer is “diffusion”
or Brownian motion, as is seen in gas dynamics. The
modification of Eq. 1 to include linear diffusion in the
shock layer is

Ut +F(U), = Uxx. [2]

With diffusion, shock discontinuities are smoothed;
however, the basic shock structure, including the
speed of the shock as determined by the Rankine—
Hugoniot jump condition, is exhibited in smooth
traveling wave solutions of Eq. 2. More recently, a
number of “scalar law” physical systems have been
identified that produce undercompressive shocks.
The model considered by Perkinson et al. (1) in-
volves an equation of motion for the slope of the
surface of the form shown in Eq. 1 with additional
physics in the shock layer from surface diffusion,
resulting in a model similar to Eq. 2 with additional
fourth-order diffusion on the right-hand side. A 1D
nonlinear model for ion beam sputtering was intro-
duced in 2005 by Chen et al. (4), who showed that it
produced undercompressive shocks that could be
reproduced in experiments. The model is a conser-
vation law in which u is the slope of the surface and
the nonlinear flux function f is the yield function,
which gives the average velocity of erosion of the
surface as a function of its local slope, and is, in gen-
eral, nonconvex. Their model has a fourth-order term
that models additional smoothing effects such as
Mullins-Herring surface diffusion or ion-enhanced vis-
cous flow confined to a thin surface layer. They
showed that stable steep undercompressive waves
were experimentally viable in ion-bombarded sur-
faces with common physical parameters.

In the case of compressive shocks, information
travels into the shock from both sides. This idea is illus-
trated in Fig. 1C. In the case of an undercompressive
shock, information enters the shock from one direction
only (Fig. 1D). It will generally pass through the shock
and exit the shock on the other side. Undercompressive
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Fig. 1. (A) Tears of wine. (B) An undercompressive-compressive shock pair in a thermally driven coating flow showing two successive snapshots
in time. The undercompressive shock is thick and dark, indicating a steep change in height using interferometry. Reproduced from ref. 14 with
permission from Elsevier. (C) Characteristic diagram of a compressive shock. (D) Characteristic diagram of an undercompressive shock.

shocks can arise in 1D conservation laws when the correct physics
in the shock layer is something other than second-order diffusion.
Mathematical examples were first constructed for diffusive—dis-
persive equations, but without any direct comparison with physi-
cal experiments (5). About 10y ago, a set of experiments involving
driven thin films confirmed the presence of undercompressive
shocks in the micrometer-scale coating flows driven by thermal
gradients (6). For such systems, the dominant physics in the shock
layer was not diffusion but, rather, surface tension on the air-liquid
interface of the free surface of the film. Compressive shocks in
driven films are well known; the most common example is the
case of paint dripping down a wall under the flow of gravity. Such
systems are known to have instabilities, namely, the classic finger-
ing instability that causes the paint to drip rather than flowing as a
uniform front (7). This mechanism is the same one that leads to the
formation of tears of wine (Fig. 1A), in which the driving mecha-
nism is a Marangoni stress caused by a gradient in surface tension
that is due to a gradient in the alcohol concentration in the me-
niscus on the wineglass because of differential evaporation of the
alcohol (8-10).

To have an undercompressive shock in a 1D scalar conserva-
tion law, one needs two ingredients: (i) a nonconvex flux f for the
bulk flow and (i) some kind of higher order physics in the shock
layer such as surface tension. The nonconvex flux typically results
from two competing physical effects in the driving mechanism, for
example, a surface stress and a bulk force in opposite directions.
In the case of ion-bombarded surfaces, the nonconvexity is in the
yield function. For both fluid films and ion-bombarded surfaces,
the physics in the shock layer comes from surface tension or
surface energies, resulting in a mathematical model with fourth-
order diffusion. For such systems, undercompressive shocks are
not generic. For weak shocks, in which the values u; and ug are
close together, one expects a compressive shock even with
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fourth-order, rather than second-order, diffusion. The tears of
wine example and the paint dripping example both correspond
to this case. Undercompressive shocks can occur when the jump
reaches a threshold and crosses a change in convexity of the flux.
Moreover, undercompressive shocks do not exist for a finite
range of parameters u; and ug; the theory predicts that for a given
right state ug, there is an isolated value of u; for the undercom-
pressive wave. This constraint means that such shockwaves are
often accompanied by a companion wave in the form of a com-
pressive shock or rarefaction fan to transition to the background
material. It also means that any driving mechanism for undercom-
pressive waves will trigger a specific wave with a known pre-
scribed jump across the shock.

Another feature of compressive waves in driven films is that
they tend to be unstable to transverse perturbations. The capillary
ridge caused by surface tension is unstable to a beading effect,
leading to paint dripping or instabilities in spin coating at high
rotation speeds. These drips need to be controlled in any kind of
design manufacturing process. One exciting aspect of the initial
discovery of undercompressive shocks in thin films was their
stability to transverse perturbations, thus creating a new stability
mechanism for a driven coating process. However, that idea has
not led, to date, to a stable design procedure for liquid-coating
processes. There are other examples of undercompressive shocks
in coating flows, including a very commonly observed phenom-
enon of water being pushed up the windshield of the car by the
surface stress of the wind counterbalanced by gravity. Such
behavior is potentially relevant to important applications like
deicing of airplane wings (11).

In a study by Holmes-Cerfon et al. (12), it was proposed that
two undercompressive waves could be collided to form isolated
steep ridges. A fully 2D experiment was realized in a magnesium
alloy under uniform irradiation by a focused ion beam. The results
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compared well with fully 2D simulations of the nonlinear model
(13). In the article by Perkinson et al. (1), the authors show that this
design principle can be used to solve an inverse problem; given a
prescribed desired end state with connected ridges, they success-
fully used the undercompressive waves to carve out the desired
pattern. To solve the inverse problem, a 1D nonlinear model, in
the form of a diffusive Hamilton-Jacobi equation, was developed
for the nonlinear motion of the undercompressive ridge as it
evolves. Monte Carlo simulations were carried out to identify
the best choice of initial pit to create the final state using ion
bombardment. The low-dimensional evolution model for the
transverse motion of the shock was instrumental in solving this
inverse problem because it allows for a lower dimensional set

space of initial configurations for testing. This new work shows
that such unusual wave patterns can be used to control design
features in small-scale materials applications. Moreover, Perkinson
et al. (1) present a new mathematical analysis that leads to a sim-
plified 1D model that accurately describes the fully 2D motion of
the front, a crucial feature needed to use undercompressive waves
for design. This work has ramifications for both technological de-
sign procedures and new simplified model development for 2D
effects in nonlinear wave propagation.
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