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ABSTRACT

We review recent progress toward the development of predictive models of ion-induced pattern formation on room-
temperature silicon, with a particular emphasis on efforts to eliminate fit parameters in the linear regime by means of experimen-
tal measurements or atomistic simulations. Analytical approaches considered include “mechanistic” models of the impact-
induced collision cascade, the Crater Function Framework, and continuum treatments of ion-induced stress and viscous flow.
Parameter evaluation methods include molecular dynamics and binary collision approximation simulations, as well as wafer cur-
vature measurements and grazing incidence small-angle x-ray scattering. Mathematical detail is provided in the context of key
results from pattern formation theory, which are also briefly summarized.
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I. INTRODUCTION

The fabrication and tuning of materials at the nanometer
lengthscale is an emerging foundational topic in materials sci-
ence research. A growing number of experimental results dem-
onstrate that nanoscale or nanostructured materials can exhibit
very different properties than their bulk counterparts, sugges-
ting promising applications in many areas including electronics,
photonics, and energy generation, storage, and conversion.
However, to reliably commercialize these technologies, it is nec-
essary to have a sound theoretical understanding of the funda-
mental processes at work. A potentially powerful agent for
nano-scale material control, which illustrates both the promise
and the need for basic understanding, is the process of ion-
beam irradiation. Attractive because of its existing widespread
use in industry for doping, smoothing, and surface hardening,
this technology has been shown capable of various feats at the
nanoscale (see Fig. 1).

One regime of interest (and our exclusive focus here)
occurs when nearly flat solids are irradiated by broad ion beams.
Here, irradiation can lead either to surface ultra-smoothing1,7 or
to the spontaneous, self-organized formation of regular pat-
terned structures.8 The desirability of such patterning depends

on the context. On the one hand, observations of periodic
patterns including ripples and high-aspect ratio quantum dots,3

with occasional long-range order2,9,10 and characteristic spacing
as small as 7nm,11 have stimulated interest in self-organized pat-
tern formation as a means of sub-lithographic nanofabrication,12

especially given the existing ubiquity of ion beams within the
semiconductor industry. On the other hand, extended exposure
to energetic particle irradiation can lead to the structural degra-
dation of fission and fusion reactor components.4,13 Hence, it is
important to be able to predict—in advance—the expected
behavior within a given environment, and such predictions are
the ultimate goal of a complete theory.

Unfortunately, the physics of ion bombardment is complex,
with several physical mechanisms being active simultaneously.
These include (a) the sputtering of some surface atoms,14–16 (b)
the relocation of many others,7,17,18 (c) surface diffusion,19,20 (d)
the creation of stress within the film,21–25 and (e) the relaxation
of strain and surface energies via viscous flow.26–28 Moreover,
the list of tunable environmental parameters is large, comprising
the ion species, ion energy, ion flux, ion incidence angle, target
species, and target temperature. A complete theory should ide-
ally be able to predict the dependence of the strength of each
physical mechanism in the first list on each of the environmental
parameters in the second. Although progress is continual,
understanding at this level remains elusive.

For this reason, much of the literature in the field has
focused on trying to understand a subset of the mechanisms
listed above, with respect to a subset of the accompanying envi-
ronmental parameters. In particular, for many ion/target com-
binations, experiments have been conducted at ion energies in
the range of 200eV–2keV, which span the set of incidence
angles from 0� (normal incidence) to 90� (grazing incidence).
The results of a representative study are shown in Fig. 2, which

FIG. 1. A variety of uses of ion beam irradiation. (a) A polycrystalline diamond surface smoothed to a roughness less than 1 nm.1 (b) Spontaneously formed, highly ordered rip-
ples.2 (c) A self-organized ordered hexagonal array of quantum dots.3 (d) Degraded surface of a tungsten fusion-reactor wall.4 (e) and (f) Shock-like pit walls open steadily
under uniform irradiation.5 (g) and (h) The controlled closing of a nanopore produces an opening small enough for use as a translocation DNA sequencer.6
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illustrates the typical behavior of monatomic targets irradiated
at such energies. At small angles of incidence, ion bombardment
can have a smoothing effect, resulting in surfaces with a RMS
roughness less than 1nm.1,7 For intermediate angles of inci-
dence, ripples will form, with the wavevector parallel to the ion
beam—i.e., oriented as water waves are when driven by a strong
wind. Ripples in this configuration are known as “parallel-mode”
ripples. Finally, as the angle of incidence increases toward 90�,
the ripples are often observed to change their orientation so
that their wavevector is perpendicular to the ion beam—i.e., ori-
ented as a corrugated roof is relative to falling rain. Ripples in
this configuration are known as “perpendicular-mode” ripples.
The presence and type of ripple can be recorded over a range of
incidence angles and ion energies, leading to a “phase diagram”
of outcomes shown in Fig. 2(a). In addition, the wavelength of
each pattern can be measured, providing additional data of the
type in Fig. 2(b). Much of this paper reviews efforts to provide a
quantitatively accurate explanation for these behaviors with as
few free parameters as possible—i.e., a model that is “as simple
as possible, but not simpler.”

This work covers the same general set of topics as the recent
review byMunoz-Garcia et al.,32 and our goal has been to comple-
ment that review with deeper coverage of a narrower set of
topics, inevitably influenced by questions of interest in our own
recent work.We concentrate on pattern formation onmonatomic
semiconductors such as silicon which develop a thin amorphous
film under room temperature ion bombardment,33 focus mostly
on linear models valid at early times, and restrict our attention to
models associated with identifiable physical mechanisms. In addi-
tion, this work emphasizes the following three themes.

1. Mathematical details. We are writing for a target audience
of non-mathematicians but will include significant mathe-
matical details. Our aim is to present the mathematics
plainly and clearly enough to make readers with an experi-
mental background comfortable with the basic results of
stability and pattern formation theory as they pertain to
ion-beam nanopattern formation.

2. Parameter evaluation. Ion-induced pattern formation
involves many competing or cooperating mechanisms
operating simultaneously. In such an environment, the use
of fitting parameters can easily give a false sense of confi-
dence in the explanatory power of a model that is actually
too simple. Because a significant focus of our own work
over the past decade has been the evaluation of such
parameters, we will include in many sections a discussion
of methods used to this end.

3. Critical assessment. Although much progress has been
made in understanding ion-induced pattern formation, a
complete predictive understanding remains to be achieved.
Therefore, we will conclude each section with a discussion
of the limitations of existing approaches and our thoughts
on important questions relevant to each line of inquiry.

This review will proceed as follows: In Sec. II, we will give a
brief overview of key concepts and results from pattern forma-
tion theory, which will then be used throughout the rest of this
manuscript. In Secs. III–V, we will review three different
approaches to understanding pattern formation: “mechanistic”
linear models of the collision cascade, the Crater Function
Framework, and continuummodels of ion-induced viscous flow.
Each of these sections will contain subsections associated with
the three themes just described. In Sec. VI, these themes are
then integrated in a brief review of recent work that directly
compares scattering spectra measured by Grazing Incidence
Small-Angle X-ray Scattering (GISAXS) with the predictions of
various linear theories, to assess the relative magnitude of the
mechanisms from Secs. III–V over a range of angles, and sug-
gests that none of them can be neglected if a predictive under-
standing of ion-induced nanopattern formation is sought.
Finally, in Sec. VII, we will provide concluding thoughts on the
overall state of the field and suggest important outstanding
questions for future study.

II. REVIEW OF GENERIC PATTERN FORMATION THEORY

In this section, we review general results on pattern forma-
tion and the tools used in its study from the seminal review by

FIG. 2. (a) Observed pattern types as a function of incidence angle and ion energy. (b) Pattern wavelengths as a function of incidence angle for an ion energy of 250 eV [i.e.,
more detail on the bottom row of (a)]. Adapted from Ref. 29 to reflect results in Refs. 30 and 31.
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Cross and Hohenberg and the recent text by Cross and
Greenside.34,35 The study of pattern formation can be usefully
divided according to the stage of the pattern formation process
itself. This includes (1) precisely characterizing the steady state
that existed prior to the patterned state, (2) identifying how
noise-induced perturbations to that state grow or decay at early
times during the linear regime, and (3) analyzing the continued
evolution of those perturbations as they grow larger within the
weakly nonlinear regime. We will briefly review the approaches
used at each stage.

A. The steady state

The study of pattern formation begins with the identifica-
tion of a simple, uniform, and unpatterned configuration, in
which the system could in principle exist forever. Examples
across materials and scales could include (a) a nanometer-scale
solid film under uniform compressive stress, (b) a centimeter-
scale fluid film heated from below with a uniform temperature
gradient, (c) a kilometer-scale cloud cover under uniform shear
stress, or (d) a light-year scale hydrogen cloud with uniform
density. In ion-induced pattern formation, the steady state is
typically a flat surface receding under erosion at uniform veloc-
ity, with potentially nontrivial (but unchanging) stresses, veloci-
ties, or concentrations existing in an amorphous film persisting
some depth below the surface.

Regardless of the system, the steady state is characterized
by its uniformity in space and time, which immediately suggests
symmetry arguments employed in its analytical identification as
a solution to the relevant governing equations. Most obviously,
because the steady state is unchanging in time, time derivatives
can be set to zero (time invariance): @

@t! 0. Next, because it is
assumed to be uniform in space, lateral spatial derivatives can
also be set to zero (translation invariance): @

@x! 0; @
@y! 0. In

the simplest case, when a single equation governs the height
z¼h(x, y, t) of a material interface, the resulting steady state is
typically just a flat surface, possibly advancing or receding in the
normal direction at a constant speed. In more complex cases,
when multiple equations govern additional quantities such as
pressure and velocity below the material interface, one typically
must solve a system of boundary value problems in the vertical
variable z, describing vertical profiles in these various fields.

B. The linear regime

Having identified a steady state, one next seeks to deter-
mine whether that state is stable to small perturbations, as will
be present in any noisy system.We therefore seek to understand
the behavior of the system—in particular the material interface—
if placed in a configuration very near the steady state. For narra-
tive simplicity, we first focus on the simplest case when a single
equation governs the evolution of the surface profile h(x, y, t). To
explore the behavior of perturbations in this case, we simply
write

h x; y; tð Þ ¼ h0 x; y; tð Þ þ eh1 x; y; tð Þ; (1)

where h0 is the (possibly translating) flat steady surface, h1 is a
perturbation applied to that surface, and e is a small

dimensionless parameter. This expansion is inserted into the
governing equation, and the resulting expressions are then
expanded, using Taylor series, in powers of e. In the limit e ! 0
of small perturbations, terms at higher than first order in e are
discarded, which leaves a linear equation for the behavior of the
perturbation described within h1.

The resulting linearized equation is then explored by prob-
ing the behavior of a single Fourier mode in the x–y plane.
Mathematically, we look for a solution of the form

h1 x; y; tð Þ ¼ h11 exp rtþ i qxxþ qyyð Þ
� �

: (2)

Here, h11 is simply a constant, q ¼ hqx; qyi is a Fourier wavevec-
tor, and r is its growth rate.When this ansatz is inserted into the
linearized equation, the solution of the result requires a specific
value of r for each q; the resulting functional relationship r(q) is
called the dispersion relation. [We note that although the two
steps in the procedure just described are technically distinct, in
practice, they are often performed simultaneously by combining
Eqs. (1) and (2).] In systems where the governing equation is a
simple partial differential equation, one may obtain the relation-
ship r(q) quite directly: for instance, inserting Eq. (2) into the 1D
diffusion equation ht ¼ a @2h

@x2 � b @4h
@x4 immediately yields the dis-

persion relation rðqÞ ¼ �aðqxÞ2 � bðqxÞ4.
In general, the dispersion relation r(q) has both real and

imaginary parts: rðqÞ ¼ RðqÞ þ iwðqÞ. This allows the linear sta-
bility ansatz to be re-arranged into the form

h1 ¼ h11 exp R qð Þtþ iq � xþ
w qð Þq
jqj2

t

 !" #
: (3)

This describes a sinusoidal waveform, with wavevector q, grow-
ing at a rate R(q) called the amplification rate and moving in
direction �q

jqj with speed wðqÞ
jqj , called the phase velocity. One is

often interested in one quantity or the other. For example, the
study of wave propagation is often concerned with the phase
velocity wðqÞ

jqj . In contrast, the study of pattern formation is more
often concerned with the amplification rate R(q). If R(q) < 0 for
all the values of q, then all Fourier modes decay exponentially
over time, and the associated steady state is deemed stable.
Conversely, if R(q) > 0 for any values of q, then some Fourier
modes grow in time, rendering the steady state unstable.

Finally, we note that in general, if the system contains addi-
tional equations governing z-dependent quantities below the
free surface, then the above procedure must also account for
perturbations in these additional fields. For concreteness,
suppose our problem includes, in addition to a surface height
h(x, y, t), a pressure field p(x, y, z, t) and a velocity field~vðx; y; z; tÞ
which extend below the surface. Then, the stability is investi-
gated by the expressions

h x; y; tð Þ ¼ h0 þ eh11 exp rtþ i qxxþ qyyð Þ
� �

;

p x; y; z; tð Þ ¼ p0 zð Þ þ ep11 zð Þexp rtþ i qxxþ qyyð Þ
� �

;

v x; y; z; tð Þ ¼ v0 zð Þ þ ev11 zð Þexp rtþ i qxxþ qyyð Þ
� �

;

where h0, p0(z), and~v0ðzÞ describe the steady state, and the sec-
ond terms are small perturbations which all have the form
described above. These expressions are inserted into the
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governing equations, the entire system is linearized (including
boundary conditions on p and~v, which require special care), and
h11, p11(z), and~v11ðzÞmust be obtained simultaneously by solving a
system of boundary-value problems in z.

1. Classification

Unstable systems are further characterized according to
which wavenumbers are unstable and which are stable. Any
well-posed continuum model should be stable to sufficiently
high-wavenumber perturbations: limjqj!1 RðqÞ < 0. (Otherwise,
the system would be expected to exhibit a structure on arbi-
trarily small scales, violating the continuum hypothesis.)
Furthermore, any unstable model must transition, as jqj
decreases, from stability to instability. The remaining question,
then, is whether this instability persists to arbitrarily small wave-
numbers or whether small wavenumbers once again become
stable.

In the so-called “Type I” or “finite-wavelength” instability,
only a limited range of wavenumbers is unstable, bounded on
both sides by stable wavenumbers. In such an instability, pat-
terns are dominated by the most unstable wavenumber and can
exhibit a significant amount of order. In contrast, the so-called
“Type II” or “longwave” instability exhibits the growth of struc-
tures at all wavenumbers below a critical value. Hence, although
a most-unstable wavenumber exists, the broad range of unsta-
ble wavenumbers allows considerably more variety in structure
lengthscale, typically leading to patterns with much less order.

We note that these classifications are related to the con-
cept of a bifurcation or transition from stability to instability as a
system parameter c crosses some critical value cc. From this per-
spective, a Type I system is one in which the amplification rate
R(q) first becomes positive at a critical wavenumber q* that is
nonzero: jq�j > 0. In contrast, a Type II system is one in which
the amplification rate first becomes positive at q* ¼ 0. These
distinctions are illustrated in Fig. 3.

C. Nonlinear regime

In the linear regime, unstable perturbations exhibit expo-
nential growth according to Eqs. (2) and (3). Obviously, such
growth cannot continue forever, and after some time, the

system reaches a state where the fundamental assumption of
the linear regime—i.e., the perturbations to the steady state are
small—is no longer valid. Consequently, nonlinear terms, which
were previously discarded, become just as important as linear
terms in determining the overall surface evolution. Numerical
simulation is of course an option, but if further analytical pro-
gress is sought, practitioners introduce some alternative simpli-
fying assumptions. In general, one focuses on the system
behavior near a bifurcation, where amplification rates are still
small, and only a limited range of wavenumbers is unstable (see
Fig. 3). This works differently depending on the nature of the lin-
ear instability identified above, but the general goal is to gain
validity at larger amplitudes in exchange for reduced validity
outside the chosenwavenumber range.

1. Type I case

As discussed above, in a Type I bifurcation, when some
model parameter c crosses a critical value cc, an instability
occurs with finite wavenumber q¼q*. For nearby parameter
values c ¼ ccþ e, a small range of wavenumbers near q¼q* grow
until amplitudes are no longer “small,” and nonlinear terms
become important. A typical approximation in this case is to
write hðx; tÞ ¼ Aðx; tÞeiq��x, where A is an amplitude of the pertur-
bation (also called an “envelope”), and the spatial dependence, in
principle, allows the formation and interaction of defects.When
this approximation is inserted back into the governing equations
under appropriate multiple-scale assumptions (for instance, A
should vary slowly in x compared to the wavelength of the per-
turbation), then regardless of the specific nonlinearities in the
equation, one typically obtains a slow evolution of the amplitude
A called the Ginzburg-Landau equation

dA
dt
¼ D1

@2A
@x2
þ D2

@2A
@y2

 !
þ r q�ð ÞA� AjAj2: (4)

By working to eliminate rapid changes in amplitude via the diffu-
sive terms, this equation tends to push the system toward fairly
uniform patterns. Moreover, because the amplification rate
r(q*) in this regime is expected to be proportional to e [i.e., pro-
portional to the amount by which c exceeds its critical value, as
suggested by Fig. 3(a)], it can be seen that at long times, the

FIG. 3. A schematic comparison of transi-
tions from stability to the two most common
instability types. (a) In “Type I” instabilities,
when a model parameter crosses a critical
threshold, a finite band of wavenumbers
becomes unstable, but longwave modes
remain stable. (b) In “Type II” instabilities,
when the parameter crosses its critical
value, all wavenumbers less than a maxi-
mum value become unstable, including
longwave modes.
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saturated amplitude limt!1 A of such patterns should be pro-
portional to

ffiffi
e
p

. If the system is anisotropic, with a single ori-
ented fastest-growingmode q*, one expects to see fairly regular
ripple arrays, whereas if the system is isotropic with only the
magnitude jq�j of the fastest growing mode specified, it is possi-
ble for combinations of ripples aligned in certain compatible ori-
entations to reinforce each other’s growth, leading to square or
hexagonal arrays of dots or pits (see Refs. 34 and 35)

2. Type II case

In contrast, for a Type II bifurcation, when some model
parameter crosses its critical value in the form c ¼ cc þ e, one
often observes a maximum amplification rate at a wavenumber
q� �

ffiffi
e
p

; moreover, wavenumbers with smaller magnitude—i.e.,
perturbations with longer wavelengths—are also all unstable.
Therefore, although perturbations at the critical wavelength
grow the fastest, perturbations at longer wavelengths also grow,
leading to increasing disorder with time. Indeed, depending on
the nature of the nonlinear terms, the longer, slower-growing
wavelengths can have a larger saturation amplitude, leading to
coarsening or roughening over time. Hence, in contrast to the
Type I case, the behavior at long times can depend sensitively on
the specific form of the nonlinear terms. Therefore, in this case,
a typical analytical strategy is to return to the full equation and
identify the most important nonlinear terms in the limit where
the wavenumber is small—the so-called “longwave approx-
imation” (lubrication theory is a canonical example of this strat-
egy36). This approach leads, in general, to one of a family of
model equations, such as the Edwards-Wilkinson,37 Kardar-
Parisi-Zhang,38 or Kuramoto-Sivashinsky39,40 equations; for an
isotropic system, the superset of terms in these equations is

ht ¼ �ar2h� br4h� c
2
jrhj2 þ g x; tð Þ; (5)

where g is a noise term. Because of the longwave approximation,
higher-order derivatives appear at increasingly high powers of
the small parameter e, and linear terms above fourth order are
often discarded. Similarly, although different systems may con-
tain a wide variety of nonlinearities, only the lowest-order in e
appears here.

D. Discussion

1. Instability types on monatomic targets

A great deal of interest in the field has surrounded the for-
mation of well-ordered 2D hexagonal arrays of hills or “dots”
under normal-incidence irradiation [see Fig. 1(c)]. Following
Facsko’s initial observation of these structures on irradiated
GaSb3 and the observation of similar structures on a variety of
other III-V semiconductors,41 they were also observed on irradi-
ated monatomic Si.42–44 This was perplexing because theoretical
models of irradiated silicon have consistently yielded only Type
II instabilities, whereas the formation of ordered structures is a
hallmark of Type I systems.This discrepancy motivated a signifi-
cant amount of theoretical exploration in a search for

mechanisms that could possibly generate an instability of the
required type.18,29,45,46

However, it was gradually realized that the dot arrays only
appeared on Si surfaces when significant amounts of metal were
also present,47–50 leading to the conclusion that the latter struc-
tures were due to metallic impurities.51 It is now generally
assumed that ordered dot arrays appear spontaneously only on
targets containing two different atomic species. In such sys-
tems, additional physical mechanisms unique to multi-
component systems arise (i.e., preferential atomic displace-
ments and ion beam mixing), and much theoretical work has
explored these systems in search of Type I bifurcations.52–60

The most recent work suggests that the chemical interaction
between the species plays an important role in the formation of
these ordered structures,58–60 which are therefore expected to
be precluded in spontaneous patterns on monatomic targets.
[We note several creative approaches for inducing ordered pat-
terns on monatomic targets by other means, including the use
of templates,12 ultra-thin metal films which enable Si-metal
interactions for only a limited time,61,62 and regular oscillation of
the ion beam incidence angle.63]

2. “Linear” vs. “longwave”

Because pattern formation on monatomic amorphous tar-
gets seems generically to exhibit Type II behavior, there is a long
history of longwave models in the literature. In particular, the
linearization of Eq. (5) produces an amplification rate given by a
quartic polynomial

R qð Þ ¼ Sq2 � Bq4; (6)

where the term Sq2 describes a roughening mechanism associ-
ated with ion bombardment, and the term –Bq4 describes a
competing smoothing mechanism of surface energy relaxation.
Given the ubiquity of this form in the literature, it is worth
emphasizing that it represents an assumption of both small
amplitudes (linear approximation) and small wavenumbers
(longwave approximation). It can be viewed either as the long-
wave approximation of an amplification rate R(q) with the arbi-
trary function of q—we will use the phrase “full-spectrum” to
denote this general case—or the linearization of a longwave
weakly nonlinear model.

The discussion above has highlighted three related, but dis-
tinct, mathematical frameworks for studying pattern formation,
which we illustrate schematically in Fig. 4. Each quadrant of the
diagram corresponds to a different combination of the presence
or absence of the linear (small amplitude) and longwave (small
wavenumber) approximations, and each offers a different com-
bination of advantages and disadvantages. A polynomial amplifi-
cation rate (south quadrant) most easily admits the
development of simple, intuitive understanding of pattern for-
mation and wavelength selection, given the relative ease of
manipulating polynomials. If more detailed understanding is
sought, longwave nonlinear terms (east quadrant) provide infor-
mation over a greater range of amplitudes (i.e., more knowledge
over time), whereas a full-spectrum linear theory (west quad-
rant) provides information over a greater range of wavenumbers
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(i.e., more knowledge over space). It is important to keep in mind
the benefits and limitations of each quadrant, and we will refer
frequently to this diagram in the remainder of this review.

3. “Top-down” vs. “bottom-up”

There are, broadly speaking, two complementary
approaches to understanding pattern formation in a given sys-
tem. Because all pattern-formation systems can be analyzed
using the common framework just summarized, and the range
of outcomes therein is finite, pattern-forming systems tend to
exhibit similar physical characteristics, just on different length-
scales. (Hence, the nanoscale ripples observed during ion bom-
bardment look quite similar to ripples seen on wind- or ocean-
driven sand.) One reasonable approach is therefore to begin
with a knowledge of the generic governing equations and seek
to apply or fit them to the behavior observed in a new system.
The advantage is that one can exploit general knowledge to
quickly build a nonlinear model that reasonably describes a
physical experiment, often over several stages of evolution. As
an example of this approach, a series of works based on the so-
called “two-field” models of ion-induced pattern formation64–67

has found success fitting an extended version of the longwave
Eq. (5) to experimental data,with very impressive results.

The disadvantage of top-down models is that it is difficult
to ascribe meaningful physical interpretations to the fitted
model and its coefficients, making it difficult or impossible to
predict parameter values from first principles. Hence, the com-
plementary approach is to start from basic physical principles,
identifying physical mechanisms, translating those into mathe-
matical models, and then progressing through analyses of the

steady state, linear stability, and weakly nonlinear regimes.
Critically, at each stage, the results of theory should be con-
firmed by experiment before proceeding to the next stage.
Although this approach takes much longer and the benefits of
universality are lost, one should obtain in the end amodel whose
parameter values are pre-determined in terms of the physical
constants present in the system. Such a model, in principle, can
then be queried to understand the behavior of new parameter
regimes. A truly predictive model is one that can correctly iden-
tify the behavior of a system at a given combination of parame-
ter values without the adjustment of free parameters.

4. Implications for tests of theory and parameter
evaluation

In this context, and especially in light of the large number
of relevant physical mechanisms described above (and in Secs.
III–V below), a particular focus of our work over the past decade
has been identifying the relative strengths of competing mecha-
nisms, especially when those mechanisms have the same gen-
eral mathematical form. For this specific goal, we have found
that

1. the bottom-up approach is essential,
2. full-spectrum models are often helpful, and
3. the linear regime is often sufficient.

Notably, despite years of steady progress, new and surpris-
ing results on the relative importance of different mechanisms
continue to emerge, which means that even the linear regime is
still not fully understood from a truly predictive standpoint.
Therefore, in what follows, we will spend most of our attention
focusing on the linear regime, with particular attention given to
methods of and progress toward parameter evaluation and the
relative strength of various mechanisms.

III. MECHANISTIC MODELS OF THE COLLISION
CASCADE

When an ion arrives at the surface of a solid target with an
energy between 102 eV and 104 eV, it typically penetrates some
distance into the solid before passing close enough to a target
atom to initiate a nuclear collision cascade.14,15 Displaced atoms
that reach the surface with enough kinetic energy to leave are
permanently sputtered away; all other displaced atoms come to
rest within the solid or on the surface. By “mechanistic models,”
we mean analytical approaches built directly on an understand-
ing of this physical mechanism.

A. Theory

We begin with a brief illustration, in Fig. 5, of the geometric
conventions used in studies of ion bombardment (these apply to
each of Secs. III–V). When a target is irradiated at other than
normal incidence, the projected direction of the ion beam is
usually taken to lie along the x-axis, with the direction of the
ions corresponding to the positive x direction in the majority of
published works. The incidence angle between the ion beam and
the vertical axis is denoted h. However, if the surface z¼h(x, y, t)
is not flat, then the surface normal points in a direction other

FIG. 4. Schematic illustration of analytical strategies encountered in the study of
pattern formation. The two simplifications most commonly used are an assump-
tion of either small amplitudes (a linear model) or small wavenumbers (a long-
wave model). Often, both quantities are assumed small, leading to an especially
simple result.
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than vertical. In that case, the local angle of incidence /
describes the angle between the ion beam and the surface nor-
mal. This angle is needed to describe the phenomenon of flux
dilution, in which a flux of strength I0 through a plane normal to
the ion beam produces a flux through the plane normal to the
surface of only I0 cos ð/Þ.

1. Erosion/sputtering

The most obvious consequence of ion beam irradiation is its
mathematical steady state, which consists of the gradual reces-
sion of the surface as incoming ions erode or “sputter” surface
atoms. Consequently, when the spontaneous formation of ripples
upon irradiated surfaces was first observed,68 it was naturally
assumed that some feature of the sputtering process might
explain the ripple formation. Attempts tomathematically describe

the effect of sputter erosion on the nanopattern-formation pro-
cess date to the work of Sigmund, who performed a detailed
study of the collision cascade process resulting from an energetic
ion impact.14,15 Sigmund reasoned that the sputter rate at any
point on the surface would be proportional to the power density
at that point due to energy released by nearby ion impacts. This
leads to an integral formulation for the surface normal velocity of
the form

vn̂ ðxÞ ¼
ð
I x0ð ÞE x; x0ð Þdx0; (7)

where vn̂ ð~xÞ is the normal velocity at a point ~x on the surface,
Ið~x 0Þ is the local flux at points near ~x, and Eð~x;~x 0Þ is a kernel
describing the energy reaching a point~x due to an impact at~x 0.
In addition, Sigmund introduced a simple model for the kernel
Eð~x;~x 0Þ, proposing that the kinetic energy of each incoming ion
is distributed into the target according to a Gaussian ellipsoid
centered at the mean ion stopping point.15 Under this assump-
tion, it was shown qualitatively that indeed, when ions fall uni-
formly on a contoured surface, concave regions (“valleys”)
should receive more total energy than convex regions (“hills”),
leading to a faster sputter erosion in the former and thereby to
an instability [see Fig. 6(a)].

The first true linear stability analysis of Sigmund’s model
was performed by Bradley and Harper,16 who exploited the
experimental observation that the wavelength of ripples is often
much larger than the size of an individual collision cascade. This
allowed them to perform a longwave linear expansion of Eq. (7),
resulting in a partial differential equation of the form

@h
@t
¼ �v0 hð Þ þ v00 hð Þ @h

@x
þ XI0 ~C1 hð Þ @

2h
@x2
þ ~C2 hð Þ @

2h
@y2

" #
� Br4h:

(8)

Here, v0(h) is the base erosion rate of a flat surface under irradia-
tion at an incidence angle of h, X is the atomic volume of the tar-
get species, I0 is the base flux (i.e., through a plane normal to the

FIG. 6. Illustration of erosive and redistributive mechanisms at normal incidence. (a) Under the Sigmund model of erosion, impacts near valleys deposit more total energy in
the valley than impacts near hilltops deposit on the hilltop. This leads to a faster sputtering rate in the valley, which is destabilizing. (b) Under the Carter-Vishnyakov model of
mass redistribution, mass is driven downbeam from the impact. For normal incidence, this drives mass from hilltops into the valleys, which is stabilizing.

FIG. 5. Main figure: an illustration of the geometric conventions used in most stud-
ies of ion-induced pattern formation, including the direction of irradiation, the inci-
dence angle in the lab frame h, and the local incidence angle at the surface /
(note that for small slopes, /� h � � @h

@x). Inset: an illustration of flux dilution. If
the flux through a plane normal to the ion beam is I0, then the flux through a plane
normal to the surface is I0 cos ð/Þ.
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ion beam as illustrated in Fig. 5), and ~C1ðhÞ and ~C2ðhÞ are
angle-dependent coefficients arising in the leading-order
linearization of the sputtering process for a curved [to simplify
discussion of competing physical mechanisms, we have used a
slightly different notation than Ref. 16—our ~CiðhÞ is equal to
their a

nXY0ðhÞ~CiðhÞ]. Because these coefficients can be negative,
an additional, higher-order term is required to regularize the
equation (i.e., to ensure that R<0 in the small wavelength-limit
|q|! 1). For this purpose, the authors chose to add the addi-
tional term –Br4h, with angle-independent coefficient B>0,
which is the linearization of isotropic Mullins surface
diffusion.20,69

We note that Eq. (8) represents both linear and longwave
approximations (south quadrant of Fig. 4), and consequently, a
stability analysis of Eq. (8) about the flat steady state produces a
linear amplification rate with quartic polynomial form

R qx; qyð Þ ¼ �XI0 ~C1 hð Þq2x þ ~C2 hð Þq2y
h i

� Bjqj4; (9)

where again ~q ¼hqx; qyi is the wavevector of a perturbation. We

see that if either ~C1ðhÞ or ~C2ðhÞ is negative, then the amplifica-
tion rateR(q) is positive for somewavevectors.The surface diffu-
sion term, which is always stabilizing, selects one of these
wavevectors as the most unstable. If ~C1ðhÞ < 0, the system is
unstable to ripples in the x-direction via a Type-II instability

with the most unstable wavelength of q�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XI0 ~C 1ðhÞ

2B

q
; similarly, if

~C2ðhÞ < 0, the system is unstable to ripples in the y-direction via
a Type-II instability with the most unstable wavelength of

q�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�XI0 ~C2ðhÞ

2B

q
. If both ~C1ðhÞ and ~C2ðhÞ are negative, it is pre-

sumed that one will observe ripples oriented in whichever direc-
tion exhibits a more negative value of ~C. Consistent with
experiment, the model predicted parallel-mode ripples at low
incidence angles, followed by a transition to perpendicular-
mode ripples at incidence angles near 90�.

a. Nonlinear and higher-order terms. Given the apparent suc-
cess of the combination of erosion and surface diffusion in the
Bradley-Harper model,16 many subsequent studies focused on
the nonlinear extension of the model as described in Sec. II, pro-
ducing weakly nonlinear models occupying the east quadrant of
Fig. 4. For instance, the erosion rate v0(h) can be expanded as a
Taylor series to higher powers of the surface slope.70 In one
dimension, expanding to second order yields a nonlinearity of
the form � 1

2 v000ðhÞð@h@xÞ
2 to Eq. (8), and as shown by Cuerno and

Barabasi,71 the equivalent process in two dimensions leads to the
anisotropic Kuramoto-Sivashinski equation

@h
@t
¼ �v0 hð Þ þ v00 hð Þ @h

@x
þ XI0 ~C1 hð Þ @

2h
@x2
þ ~C2 hð Þ @

2h
@y2

" #
� c1

2
@h
@x

� �2

� c2
2

@h
@y

 !2

� Br4h:

Later works extended the expansion of Eq. (7) to even higher
order. As the focus here is on linear theories, we refer readers

to two other reviews that cover this specific line of inquiry,32,72

as well as more recent work specifically exploring the behavior
of nearly vertical, shock-like features on otherwise flat surfa-
ces,5,73–75 and sawtooth-like structures featuring alternating
facets of different slopes.76–79

Of particular interest in our context, however, we note that
this approach also yielded additional linear terms at third and
fourth orders. As noted in the original work of Bradley and
Harper,16 thermally activatedMullins surface diffusion is unlikely
to be very strong at room temperature, and an alternate regu-
larization mechanism should be identified for low temperature
irradiation. The fourth-derivative terms obtained in the higher-
order expansion of Eq. (7) had a negative sign, which suggested
that even when sputtering produced a positive amplification
rate at small wavenumbers, it could exhibit a negative amplifica-
tion rate at higher wavenumbers. Therefore, it was proposed
that these terms provided the needed low-temperature substi-
tute for thermally activated surface diffusion, under the name
“ion-induced effective surface diffusion.”80

As noted above, the need for regularization arises because
any model consistent with the continuum hypothesis must sup-
press structure formation as jqj ! 1. However, longwave
expansions are technically only valid in the opposite limit,
jqj ! 0. As with any truncated Taylor series, these expansions
can be highly inaccurate when the wavenumber is no longer
small, so the use of a term obtained in the latter limit to regular-
ize a model in the former limit is risky. [It is important to note
that the term �Bjqj4 in Eq. (9) is not a longwave truncation of
some more-accurate full-spectrum amplification rate. Instead,
the Mullins mechanism—whose nonlinear form is vn̂ /r2

SK,
whereK is the curvature andrS is the surface Laplacian—simply
happens to have a quartic amplification rate in the full-spectrum
linear regime.] Indeed, in this case, it was later shown by
Bradley81 that for angles of incidence h < 45�, the full-spectrum
amplification rate associated with the Sigmund kernel is positive
for all sufficiently large jqj, approaching a constant value of R as
jqj ! 1 and implying that low temperature regularization could
not come from the Sigmund kernel itself (a similar result was
also obtained slightly later by More and Kree82). A physically
consistent mechanism providing the needed regularization was
not identified until sometime later (see Sec.V).

2. Displacements/redistribution

Despite the success of the Bradley-Harper model, and the
subsequent effort spent extending it to higher order, a funda-
mental inconsistency remained between theory and experi-
ment. Namely, the Sigmundmechanism should induce ripples at
any angle of incidence, when in fact it has long been known that
monatomic amorphous targets can be free of ripples if irradi-
ated at near-normal angles of incidence.17 Clearly, either the
Sigmund model was fundamentally wrong in its description of
erosion or some other mechanism was suppressing the
Sigmund instability at these angles. Indeed, such a mechanism is
readily apparent in simulations of ion impacts—although many
atoms are displaced in the collision cascade, only a relatively
small number of these are actually sputtered away from the
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surface. The others remain in the target at new locations, and
the effect of this redistribution of non-sputtered target atoms is
ignored by the Sigmundmodel of sputtering.

The foundational work investigating the effect of redis-
tributed atoms was performed by Carter and Vishnyakov,17

who reasoned that when irradiated from off-normal inci-
dence, the net displacement of redistributed atoms would
occur in the direction of the ion beam as projected onto the
surface. In aggregate, under many impacts, the effect could
therefore be modeled as an atomic flux in the projected ion
beam direction. In particular, under normal incidence bom-
bardment, atoms on hilltops would tend to be driven downhill
into valleys, stabilizing the surface [see Fig. 6(b)]. More gener-
ally, for nearly flat surfaces (i.e., in the linear regime), Carter
and Vishnyakov proposed the presence of a lateral flux of tar-
get atoms proportional both to the local projected ion flux
I0 cos ð/Þ and to the sine of the local incidence angle / rela-
tive to the surface normal. In 1D, this gives

j hð Þ ¼ dI0 cos /ð Þsin /ð Þ; (10)

where d is a proportionality constant determined empirically.
Then, applying conservation ofmass, one has in the linear regime

@h
@t
¼ �X

@j
@x
� XdI0 cos 2hð Þ @

2h
@x2

; (11)

where we have employed the relation / � h� @h
@x described in

the caption of Fig. 5. The original work of Carter and Vishnyakov
considered a one-dimensional surface (i.e., parallel-mode per-
turbations), and the effect of such an atomic flux on perturba-
tions aligned in the perpendicular-mode direction was worked
out later by Davidovitch,18 who showed that a second term of
the form XdI0 cos2ðhÞ @

2h
@y2 appeared in Eq. (11).

Combining the results of Carter and Vishnyakov and
Davidovitch with those of Sigmund and Bradley and Harper, one
obtains a composite evolution equation of the form

@h
@t
¼ XI0

�
~C1 hð Þ þ d cos 2hð Þ
� � @2h

@x2

þ ~C2 hð Þ þ d cos2 hð Þ
� � @2h

@y2

�
� Br4h; (12)

with the corresponding linear dispersion relation

R qð Þ ¼ �XI0 ~C1 hð Þ þ d cos 2hð Þ
	 


q2x
h

þ ~C2 hð Þ þ d cos2 hð Þ
	 


q2y
i
� Bjqj4: (13)

Carter and Vishnyakov reasoned that, because both ~C1ðhÞ
< 0 and ~C2ðhÞ < 0 for small angles of incidence, redistributive
effects must be responsible for the observed stability near nor-
mal incidence (although they did not have the form of the redis-
tributive coefficient for the y-direction, rotational symmetry
at normal incidence dictates that its value be equal to that of the
coefficient for the x-direction when h¼0). Similarly,
Davidovitch reasoned that, because cos2ðhÞ > 0 for all angles of
incidence, erosive effects must dominate near grazing incidence
where perpendicular-mode ripples are observed. Hence, the
composite model (12) seemed potentially consistent with obser-
vations on the angle-dependence.

B. Parameter evaluation

Because irradiation by ion beams has long been used in
industry as a means of implanting material surface layers with
desired concentrations of dopants, the behavior of high-
velocity ions interacting with solids has a long history of numeri-
cal simulation. In addition to being an early application ofmolec-
ular dynamics (MD),83–86 the nature of the collision cascade
inspired the development of the simpler Binary Collision
Approximation (BCA)87,88 specifically to study ion-solid interac-
tion. In particular, packages such as SRIM (“Stopping and Range
of Ions in Matter”)89,90 and many subsequent derivatives (such
as SDTRIM.SP91 and TRI3DST92) have become widely used and
include within their default output quantities such as the aver-
age ion penetration depth and the lateral and longitudinal strag-
gles of these ions. These quantities are often taken to equal the
parameters present in the Sigmund ellipsoidal model of energy
release, and consequently, BCA simulations have long been used
to estimate parameters in the Bradley-Harper model of sputter-
ing and its extensions.

After the introduction of the study of displaced/redistrib-
uted atoms by Carter and Vishnyakov,17 it was observed that the
magnitude of the surface flux presumed by that model could
also be obtained from MD or BCA simulations. This was first
done byMoseler et al., who studied the ultra-smoothness of car-
bon coatings deposited at low energies (�30 eV).7 Independent
of the work described above, these authors obtained Carter and
Vishnyakov’s 1D results and determined that the coefficient d
should equal the magnitude of the vector sum of all atomic dis-
placements resulting from the collision cascade. They then used
molecular dynamics simulations to obtain d and compared the
resultingmodels with experimental smoothing rates.

As it became clear that both erosion and redistribution con-
tribute to the final patterning behavior and because the former
is destabilizing while the latter is stabilizing near normal inci-
dence, it was natural to begin probing the relative magnitudes of
the two effects. The first attempts to measure both sets of
parameters from a single simulation were performed by Zhou
et al.,93 who found that Eq. (12) with the simulation-informed val-
ues of both Sigmund’s ellipsoidal parameters and Carter and
Vishnyakov’s d, provided good agreement with experimental
results on the irradiation of Al2O3 by 600eVArþ ions.

C. Discussion and open questions

The approaches described in this section have a number of
attractive properties. They are based on simple and accessible
models of the collision cascade process which can be communi-
cated visually as in Fig. 6, and they exhibit reasonable agreement
with experiment over a range of irradiation incidence angles.
Nevertheless, there are several concerns and open issues per-
taining to their use.

1. For the Sigmund model of erosion

The fundamental assumptions of the Sigmund model14,15 in
its simplest and most common form are that (a) on average,
energy is deposited below the surface in a distribution with the
Gaussian ellipsoidal shape, centered at themean ion penetration
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depth; (b) this distribution rotates about the impact point with
the incidence angle of the incoming ions; and (c) the erosion
rate is proportional to the energy deposited at the surface.
Although plausible, these assumptions have undergone only lim-
ited verification,with mixed results.

The possibility that the energy distribution could be poorly
fit by a Gaussian ellipsoid has been anticipated since the earliest
studies,14,94 and advances in computing resources now readily
enable visualizations of cases where ellipses fit the observed
energy distribution quite well95 or rather poorly.96 Such studies
suggest that the fidelity of this approximation decreases with
decreasing ion mass and/or increasing ion energy, in which
case significant skewness appears in the distribution. Results on
the relationship between the surface energy density and the
erosion rate are very limited, but in molecular dynamics simula-
tions of a variety of common experimental conditions (several
noble gas ions, on both Si and Ge surfaces, at both 250 and
1500eV), Hossain et al. observed that the relationship between
the deposited energy and the sputter rate was in fact nonlinear
and also depended significantly on ion-induced variations in the
atomic number density at the surface.95

A particular source of concern is the issue of the angle-
dependence of the energy distribution. In Sigmund’s original
model, the distribution was assumed to rotate upward toward
the surface with increasing angle of incidence of the ion beam.
As the angle h approaches grazing incidence, a significant por-
tion of the distribution exists above the surface and is ignored.
Although non-physical, this correlates with the observation that
sputtered atoms and backscattered ions carry away an increas-
ing fraction of the ion energy in this limit. Nevertheless, at graz-
ing incidence, the highest energy density occurs right at the
surface, leading to maximum predicted sputter yield at grazing
incidence, when in fact the sputter yield is observed to reach a
peak at a smaller angle (often between 70� and 80�), before rap-
idly decreasing to nearly zero as ion backscattering becomes
the dominant behavior.

This behavioral discrepancy has been addressed in a num-
ber of ways. Sigmund explained the downturn as the result of
the incomplete development of the entire collision cascade due
to the missing scattering from target atoms that would have
been above the surface, had the solid extended in all direc-
tions.97 In contrast, studying the dependence upon the inci-
dence angle of the scattering events occurring near the
surface—not the full spatially resolved distribution of released
energy—Yamamura et al. proposed the following empirical
expression based on an increased reflection probability from
beneath the surface at off normal incidence and, near grazing
incidence, surface channeling, which is a reduced probability of
penetrating the first layer98

Y hð Þ ¼ Y 0ð Þ 1
cos hð Þ

� �f

exp �R
1

cos hð Þ
� 1

� �� �
;

whereY (0) is the sputter yield at normal incidence, and f and R
are empirical parameters.While not based on an underlying the-
ory of energy release, this form resembles the prediction of the
Sigmund model for low angles but peaks at an intermediate
angle before decaying rapidly to zero at high angles as the

exp ð�R sec ðhÞÞ term dominates. The resulting shape enables
very good empirical agreement with experimental observa-
tions.5,98,99 More recently, Bradley and Hofs€ass proposed a mod-
ification to Sigmund’s spatially resolved model, in which the
ellipses rotate faster than the angle of incidence.100 For any inci-
dence angle, this places even more of the distribution above the
surface than in the Sigmund model. Notably, the distribution’s
center rises above the surface at a critical angle hc < 90�, pro-
ducing a peak sputter yield at that angle, followed by a decrease
at even higher angles. This approach was reported to produce
somewhat better agreement with simulated sputter yields over
a wider range of irradiation angles;101 however, the observed
strong trend toward zero sputter yield as the irradiation angle
reaches grazing incidence remains difficult to reproduce with a
spatially resolvedmodel.

2. For the Carter-Vishnyakov model of redistribution

The issue of the angle-dependence that plagues the
Sigmund model of erosion also affects the Carter-Vishnyakov
model for redistribution. In Eq. (10), the assumption is that the
magnitude of the net displacement vector for a single ion impact
is a constant d for any angle of incidence—the factor of sin ðhÞ is
simply the trigonometric projection of this vector in the lateral
direction. However, if ion backscattering becomes dominant at
grazing incidence, then in fact, d depends on the incidence angle
h, with d ! 0 as h ! 90�. Thus, in this limit, the CV model, like
the Sigmundmodel, exhibits significant quantitative error.

Of even greater concern, however, is that Carter and
Vishnyakov’s model of redistribution is fundamentally less com-
prehensive than the Sigmund model of erosion. Whatever its
limitations, Sigmund’s model is fully “spatially resolved”—erosion
is driven by an energy distribution that is fully specified in
three-dimensional space. Although early modeling focused on
the limit of surface modulation with small amplitudes and wave-
numbers,16 the same underlying mechanism was later used to
obtain weakly nonlinear longwave equations,71,72,80 and full-
spectrum linear amplification rates.81 (Indeed, without any
changes, the Sigmund model can also be applied in the fully
nonlinear case of large amplitudes and slopes, leading to work
on the behavior of steep-walled shock fronts5,73–75 and on the
behavior of alternating sawtooth-like structures.76–79)

In contrast, the CV model does not give a spatially resolved
picture of atomic redistribution in 3D. Instead, it represents a
hypothesized behavior of an average quantity—the net atomic
displacement vector. The trigonometric projection of this vector
in the lateral direction [via the sin ðhÞ term] is valid only when
the amplitude is small (i.e., the linear regime). Moreover, its pro-
jection of the ion beam flux onto the local surface normal [via
the cos ðhÞ term] implicitly assumes that the surface normal is
nearly constant at any given point on the surface, at least over
the scale of the collision cascade. It is therefore fundamentally
(even if implicitly) also a longwave model that only applies when
the scale of the surface features is much larger than the scale of
a single ion impact. Because of these limitations, it cannot be
studied in more detail to uncover nonlinear terms in the
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longwave limit nor the behavior of high-wavenumber perturba-
tions in the linear regime.

IV. THE CRATER FUNCTION FRAMEWORK

By themid-2000s,with the work described above becoming
widely known, and increasing interest in simulation-based
parameter evaluations, there were also being performed careful
observations of experimental results over a range of irradiation
parameters, and comparisons to the predictions of theory over
the same ranges (see Ref. 8 for a review). In particular, the
experiments of Madi et al.29,30 on Arþ ! Si — some results from
which are reproduced in Fig. 2 above — seemed an ideal testbed
for careful testing of the angle- and energy-dependence of the-
oretical predictions because of their use of a monatomic silicon
target in a carefully shielded chamber designed to eliminate the
possibility of metallic impurities influencing the observed pat-
terns. As initially reported, these experiments were mostly con-
sistent with the results expected from the composite model (12),
with one notable exception—the presence of “holes” and
perpendicular-mode ripples at small angles (h < 20) and ener-
gies (E<600eV), when Eq. (12) was expected to predict flat sur-
faces. Although they were eventually shown to be an artifact,31

the search for additional physical mechanisms to explain these
structures motivated significant advances in our knowledge in
subsequent years.

One proposed candidate for the “missing” mechanism was
the formation of small rims around the craters arising from sin-
gle ion impacts. In sufficiently controlled conditions, these
rimmed craters could be observed experimentally [Fig. 7(a)];1,102

they were also readily observed duringmolecular dynamics sim-
ulations of impacts at sufficiently high energies [Fig.
7(b)].86,103,105 Later, it was established by MD simulation that
even at much lower energies, where neither experiment nor
simulation exhibits obvious single-impact damage signatures, a
clear rimmed crater shape is nevertheless observable when the
surface change is averaged over many impacts [Fig. 7(c)].104 A
crater rim is clearly a redistributive effect, but it is clearly not
captured by Carter and Vishnyakov’s surface flux. This naturally
raised questions on the effect of these shapes on surface
dynamics and whether this phenomenon could be causing the
unexplained structures at a low angle and energy. The study of
these questions led to an approach known as the “Crater

Function Framework” that allows a more direct connection
between simulation and theory than was possible before, and
additionally offers a potential remedy for some of the concerns
with the mechanistic models described above in Sec. IIIC.

A. Theory

1. Integro-differential equation

If the dominant effects of the impact-induced collision cas-
cade can be assumed to take place near the surface of the evolv-
ing film, then the normal surface velocity of an ion-bombarded
surface can be represented by an integro-differential equation
of the form18,106,107

@h
@t

xð Þ ¼
ð
I x0ð ÞDh x� x0;S x0ð Þ

	 

dx0; (14)

where Iðx0Þ ¼ I0 cos ð/ðx0ÞÞ is the projected ion flux depending
on the local angle of incidence /ðx0Þ; Dh is the “crater function”
describing the average surface response at a point x due to sin-
gle ion impacts at a point x0, and S describes an arbitrary para-
metric dependence of the crater function on the surface shape
at the point of impact. This is essentially just Sigmund’s equation
(7), with the kernel based on an ellipsoidal energy release
replaced by the actual change in the surface height. Besides
admitting rimmed craters, this form potentially has more funda-
mental advantages over traditional treatments of irradiation-
induced morphology evolution. Instead of separate, simplified
models of the processes of sputter erosion15,16 andmass redistri-
bution17,108—both of which break down as the angle of incidence
approaches grazing—the crater function Dh naturally includes
components due to both sputtered atoms and redistributed
atoms (thus unifying the two approaches) and can in principle
be obtained empirically (thus avoiding model inaccuracy at high
angles of incidence).

Two initial attempts to study Eq. (14) should be noted. First,
Davidovitch explored the question by imagining that the kernel
Dh was formed by the difference of two Gaussian ellipsoids.18

While not based on a physical mechanism, this work showed
that in principle, craters with rims could produce a wider variety
of surface dynamics than previously observed. This approach
had the advantage of being compatible with analytical coarse-

FIG. 7. Examples of single impact craters. (a) An experimental image of a single impact of 1 keV Neþ ! Ag, from Ref. 102. (b) A molecular dynamics simulation of a single
impact of 100 keV Xeþ ! Au, from Ref. 103. (c) The average of many separate impacts of 500 eV Arþ ! Si, from Ref. 104.
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graining methods to produce coefficients of a partial differential
equation, but was not ultimately obtained from a physical or
numerical model of ion impacts. Second, the effect of rims was
studied at a more direct level by Kalyanasundaram,109 who
designed a numerical algorithm in which at random intervals,
individual crater shapes discovered in Ref. 104 were “stamped”
on a surface, which was allowed to relax by simulated surface
diffusion in between impacts. This approach had the advantage
of directly incorporating MD data, but as a strictly numerical
exploration, it did not reveal the conceptual connection
between the crater shape and surface dynamics.

2. A generic framework

Additional progress in understanding Eq. (14) was made
using the same approach as Bradley and Harper,16 by exploiting
typical experimental observations of a separation of spatial
scales between the size of the impact (direct spatial dependence
of Dh) and the much larger typical size of emergent structures
(spatial dependence of / and S). Put differently, the local surface
shape S and the local angle of incidence / vary slowly in space
compared to individual craters Dh. In general, then, Eq. (14) can
be re-written as

@h
@t

xð Þ ¼
ð
I euð ÞDh �u;S euð Þð Þdu; (15)

where e is a small parameter describing the ratio of crater to
pattern lengthscales, and u ¼ x0 � x is the distance between the
point x and the impact point x0 in units associated with the scale
of an individual impact. In this form, Dh is now seen to be a
multiple-scale function with both a “fast” and a “slow” depen-
dence on u (the projected ion flux varies only slowly on the local
angle of incidence). Moreover, it suggests a multiple-scale anal-
ysis in which the integral in Eq. (15) is expanded in powers of e
into an infinite series of terms involving the moments of Dh.107

In the linear regime, this process yields (see Appendix A)

@h
@t
¼ IM 0ð Þ
� �

�r � IM 1ð Þ
� �

þ 1
2
r � r � IM 2ð Þ

� �
� � � � ; (16)

where the M(i) are the moments of the crater function Dh in
increasing tensor order

M ið Þ ¼
ð
u ið ÞDh u;S 0ð Þ

	 

du: (17)

We note that u(i) denotes an i-th order tensor: uð1Þ ¼ u;
uð2Þ ¼ u� u; uð3Þ ¼ u� u� u, … where � is the outer product,
and r are divergences which reduce these tensor moments
back to scalars before summation.

Equation (16) represents a generic multiple-scale expansion
of Eq. (14) in the sense that it should apply for any parametric
dependencies of the crater function on the surface shape S. To
apply this result to a specific system, then, one must (a) define
the crater function Dh and (b) insert it into Eqs. (16)–(17). In gen-
eral, to leading order, one obtains the expression

@h
@t
¼ c0 hð Þ þ c1 hð Þ @h

@x
þ c11 hð Þ @

2h
@x2
þ c22 hð Þ @

2h
@y2

; (18)

where we have adopted the convenient notation introduced in
Ref. 110. Note that this form is the same as that in Eq. (8).

3. From moments to coefficients

The functional form of the coefficients c…(h) depends on
the specific form of the crater function. For instance, in Ref.
107, it was shown that for the crater function associated with
Sigmund’s model of erosion, Eq. (16) recovers the results of
Bradley and Harper for the coefficients c11(h) and c22(h).
However, the original goal of this approach was to accommo-
date more general (and potentially empirical) crater shapes,
such as those featuring rims. Therefore, instead of worrying
about the specific form of Dh, one can specify only its para-
metric dependence and then linearize the resulting specific
instance of Eq. (16) about a flat surface. This produces formu-
lae for c…(h) with the same parametric dependence, which
can both inform and exploit simulation results (as discussed
in more detail below).

Because the first two terms

c0 hð Þ ¼ v0 hð Þ ¼ �XI hð ÞY hð Þ;

c1 hð Þ ¼ �v00 hð Þ ¼ @

@h
XI hð ÞY hð Þ½ 	;

(19)

where X is the atomic volume, IðhÞ ¼ I0 cos ðhÞ is the flux
through a plane normal to the surface, and Y(h) is the atomic
sputter yield, are widely known and do not affect the surface
stability (indeed, they can be eliminated by a the adoption of a
suitable vertically and laterally advecting frame of reference),
most attention has focused on obtaining the angle-dependent
coefficients c11(h) and c22(h). This process was first demonstrated
in Ref. 111, where for simplicity and consistency with available
simulation data, the crater function

Dh ¼ g x� x0; /ð Þ
was chosen, which depends parametrically only on the local
angle of incidence /. Inserting this expression into (16), one finds
that the angle-dependent coefficients c11(h) and c22(h) are related
to the crater function via the expressions

c11 hð Þ ¼ @

@h
I0 cos hð ÞM 1ð Þ

x hð Þ
h i

;

c22 hð Þ ¼ I0 cos hð Þcot hð ÞM 1ð Þ
x hð Þ

h i
;

(20)

where Mð1Þx is the component of the (vector) first moment in the
projected direction of the ion beam.

More generally, as noted in Refs. 18, 107, and 111, the crater
function in principle also depends on higher-order properties of
the surface such as its curvature, via an expression such as18

Dh ¼ g x� x0; /;
@2h
@x2

;
@2h
@x@y

;
@2h
@y2

 !

depending, in addition to the angle of incidence /, on the second
derivatives of the surface shape at the point of impact. It was antici-
pated that the inclusion of such a dependence would provide more
accurate values of c11(h) and c22(h), enabling better agreement with
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experimental tests of the crater function framework.112 Recently,
the theoretical implications of this dependence have been worked
out—Harrison and Bradley found that including this dependency
within the crater function reveals additional terms in the coefficient
values,which take the revised form110

c11 hð Þ ¼ @

@h
I0 cos hð ÞM 1ð Þ

x

h i
þ @

@K11
I0 cos hð ÞM 0ð Þ
� �

;

c22 hð Þ ¼ I0 cos hð Þcot hð ÞM 1ð Þ
x

h i
þ @

@K22
I0 cos hð ÞM 0ð Þ
� �

;

(21)

where K11 ¼ @2h
@x2 and K22 ¼ @2h

@y2.

4. Higher-order terms

The progression implied above can be carried further, yield-
ing higher-order linear coefficients in Eq. (18). For instance, let
us consider a 1D crater function of the form

Dh ¼ g x� x0; /;
@2h
@x2

;
@3h
@x3

;
@4h
@x4

;…

� �
;

i.e., in which the dependence on the surface shape now extends
to an arbitrary number of derivatives of h(x). Because the
moments M(i) inherit the crater function’s parametric depen-
dence on the surface shape through Eq. (17) and, in the linear
regime, all of the derivatives of h can be considered very small,
each moment can be expanded to leading order in h via

MðiÞ
�
/;
@2h
@x2

;
@3h
@x3

;…
�
� MðiÞ þ @

@/
MðiÞjðflatÞ � ð/� hÞ

þ @

@
� @2h
@x2

�MðiÞjðflatÞ � @2h@x2
…:

Inserting this expression into the generic result (16) produces a
linearized governing equation of the form

@h
@t
¼ c0 hð Þ þ c1 hð Þ @h

@x
þ c11 hð Þ @

2h
@x2
þ c111 hð Þ @

3h
@x3
þ c1111 hð Þ @

4h
@x4
þ � � � ;

where

c0 ¼ IM 0ð Þ
� �

;

c1 ¼ �
@

@/
IM 0ð Þ
� �

;

c11 ¼
@

@/
IM 1ð Þ
� �

þ @

@K11
IM 0ð Þ
� �

;

c111 ¼ �
@

@/
IM 2ð Þ
� �

� @

@K11
IM 1ð Þ
� �

þ @

@K111
IM 0ð Þ
� �

;

c1111 ¼
@

@/
IM 3ð Þ
� �

þ @

@K11
IM 2ð Þ
� �

� @

@K111
IM 1ð Þ
� �

þ @

@K1111
IM 0ð Þ
� �

:

… (22)

Here, I ¼ I0 cos ðhÞ; K1ðnÞ ¼ @ðnÞh
@xðnÞ, and all derivatives of bracketed

terms are evaluated for a flat surface. (We note that the coeffi-
cients involving the y direction for a 2D expansion would require
more care to obtain due to the common convention of creating

local co-ordinates aligned with the projected ion beam direction
at the point of impact).

We caution, however, that the inclusion of such higher-order
terms may be of limited value. First, higher-order moments are
more sensitive to any inaccuracy in the simulated impact.
Moreover, as described above,much effort was expended to obtain
higher-order expansions of the Sigmundmodel of erosion, and for
a time it was assumed that while erosion could be destabilizing at
small wavenumbers through the second-order terms, it could also
be stabilizing at higher wavenumbers through the fourth-order
terms. However, the later study of the exact dispersion relation for
the Sigmund model showed that this was incorrect.81 Because the
crater function framework is simply a generalization of the results
in Sec. III, the same concerns apply here.

5. Implications

Conceptually, the crater function framework enables a con-
cise explanation of precisely how an arbitrary collision cascade
affects the surface stability—through the first few moments of
the associated crater function. For instance, the zeroth moment
M(0)(h) ¼ –XY (h) is simply the negative product of the atomic
volume X and the sputter yield Y. This means that the familiar
expressions (19) for c0 and c1 have long expressed the erosion
and lateral advection rates generically in terms of the zeroth
moment, and Eqs. (20)–(22) can be seen as simply extending that
genericism to the higher-order coefficients. Moreover, expres-
sion in terms of moments greatly simplifies an eventual quest to
obtain an empirically informedmodel—it implies that statistically
reliable data are not needed on the entire crater function shape
(which would require many samples) but rather only for its first
fewmoments (which requires far fewer samples).

This approach also directly addresses two of the main con-
cerns with mechanistic methods described above in Sec. III.
First, if the empirical, statistically converged values of the first
fewmoments can be obtained over the whole range of incidence
angles h 2 [0�, 90�], the resulting model should be much more
accurate at large incidence angles than a model based on simple
geometric arguments (i.e., the rotation of Sigmund’s ellipses and
the trigonometric projection of Carter and Vishnyakov’s surface
flux). Second, it places erosion and redistribution on completely
equal theoretical footing. Assuming that the contributions of
erosion and redistribution to the crater function Dh can be dis-
tinguished, i.e.,

Dh ¼ Dheros: þ Dhredist:; (23)

(this is fairly trivial in an atomistic simulation), then each of the
moments in Eq. (16)—and therefore each of the coefficients in
Eqs. (20)–(22)—can be similarly split into erosive and redistribu-
tive parts (with the exception of M(0), which is purely erosive).
Comparing Eqs. (10) and (11) to Eqs. (20) and (21) and noting that
M(0) is purely erosive, we see that Carter and Vishnyakov’s sur-
face flux model can be efficiently re-cast as an assumption that
the redistributive contribution to M(1) is Mð1Þredist: ¼ d sin ðhÞ.
Moreover, this result immediately answers one of the questions
that motivated its development—isotropic crater rims would
first appear in the second momentMð2Þredist: and therefore have no
leading-order effect on surface stability through c11(h) or c22(h).
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B. Parameter evaluation

The results described above immediately suggest a strategy
for building a governing equation having the form of Eq. (18)
directly from atomistic simulations, by means of the moments
appearing in Eq. (16) and specifically their derivatives which
appear in Eqs. (20)–(22). In general,wemust

(1) create or select a simulation tool to perform many single-
impact simulations,

(2) obtain statistically converged moments at various required
surface geometries,

(3) estimate derivative values using data from adjacent
parameter combinations,

(4) smooth the data to prevent uncertainties at step (2) from
being amplified in step (3).

An approach incorporating such steps was first demonstrated
in Ref. 111, where molecular dynamics simulations using the

PARCAS code113–115 were performed for irradiation of Si by
250eV Arþ at 5-degree increments between 0� and 90�.
Smoothing was accomplished by a weighted fitting of the simu-
lation results to a truncated Fourier series, and the fitted values
ofMð1Þx ðhÞ were then inserted into Eq. (20). Analyzing the result-
ing linear PDE with the form of Eq. (18) (with additional terms
describing ion-enhanced thin film viscous flow, described
below in Sec. V), the most-unstable wavelengths at each angle
were compared to the wavelengths of experimentally observed
structures, with reasonable agreement (see Fig. 8). In the pro-
cess, the relative sizes of the effects of erosion and redistribu-
tion were directly obtained and compared, and the effects of
redistribution were unexpectedly found to be dominant for the
chosen system, not only causing the regime of smooth surfaces
below 40� but also driving the instability to parallel-mode sur-
faces at higher angles (only the perpendicular-mode instability
at 85� was not accounted for).

FIG. 8. First use of the Crater Function Framework, applied to the system 250 eV Arþ ! Si, from Ref. 111. (a) The coefficient SX(h) ¼ c11(h) governing the leading order
behavior of parallel-mode perturbations. (b) The coefficient SY (h) ¼ c22(h) governing the leading order behavior of perpendicular-mode perturbations. (c) A prediction of the
pattern wavelengths based on an additional estimate of the surface-relaxation coefficient B. [Note: although at the time of this work, the additional terms @Mð0Þ

@Kii
from Eq. (21)

were unknown, subsequent re-analysis has confirmed that, because M(0) is purely erosive and erosion is weak at 250 eV, these terms are essentially negligible.].
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Since its introduction, the Crater Function Framework has
been extended in a number of ways. As described above,
Harrison and Bradley extended Eq. (20) to include the effect of
curved surfaces through Eq. (21). Because the additional terms
describe the effect of surface curvature on the purely-erosive
zeroth moment M(0), adoption has tended to depend on the
energy studied and simulation method used. Studies at higher
energies using the BCA now regularly include the terms,92,116–119

because they seem to contributemeaningfully to the coefficients
c11(h) and c22(h) at those energies, and some BCA codes readily
allow the simulation of ion impacts on curved targets. On the
other hand, studies at lower energies using MD may still omit
the terms,111,115,116 because of the complexity of creating relaxed
amorphous targets with varying curvatures, and because erosive
effects are not particularly strong at such energies.

Another notable addition to the framework is the inclusion
of the effect of implanted ions. Although implanted noble gas
ions have often been ignored, Bradley and Hofs€ass122 and
Hofs€ass et al.123 reasoned that when a target is irradiated with
atoms of its own species, then implanted atoms would also con-
tribute meaningfully to the crater function. Accordingly, they
added a term Dhimplant. to Eq. (23) which,when added to the inte-
grand in Eq. (14), yields contributions due to implantation to the
moments in Eq. (16) and hence to the coefficients c11(h) and
c22(h). More recently, Hobler et al. discovered that even noble
gas ions make such a contribution.118 Although, in the steady
state, these tend to sputter at approximately the same rate they
are implanted, and therefore do not contribute to M(0), these
authors found that the re-sputtered ions tend to originate far-
ther “downstream” than the final resting place of the implanting
ions that effectively replace them. This yields a meaningful con-
tribution M(1)(h) even though the noble gas ions tend to remain
embedded in the solid surface only a short while before they are
eventually re-sputtered.

C. Discussion and open questions

As hinted above, the Crater Function Framework can be
seen as a generalization of themechanistic approaches described
in Sec. III—it can reproduce the seminal results associated with
those models, while providing insights into exactly how the
moments of the crater function Dh affect morphology evolution.
However, it can also be paired with empirical moments obtained
from atomistic simulations, sidestepping potential model errors
and thereby providing more accurate predictions. This also pro-
vides unprecedented granularity of understanding, as the crater
function, and hence, themoments, can be broken down into con-
tributions from sputtered atoms, redistributed atoms, and
implanted ions, each of which can be further divided by atomic
species.118,124,125 Nevertheless, despite these advantages, the cra-
ter function framework has important limitations of its own.

1. Defining shape

One of the most basic needs of the framework is to convert
changes in the positions of discrete atoms into the change in a
surface height Dh(x, y), so that the moments of that change can

be computed. At least three different methods have been used
to do this in the literature.

1. The first attempt to analyze single-impact crater functions
defined the surface h(x, y) as the height for which a “virtual
silicon probe atom” experienced zero force.104 This
approach is probably most consistent with how a “surface”
is physically defined; however, it experiences the concavity
bias associated with AFM tips and is more generally over-
sensitive to local dynamics. For instance, sub-surface dis-
placements may not register accurately, and therefore,
there is no guarantee that the zeroth moment equals the
sputter yield times the atomic volume.

2. The presentation of the generic crater function framework107

proposed defining Dh as a sum of delta functions with the
magnitude equal to the atomic volume, located at the pre-
and post-impact atomic positions. Exploiting the integral
properties of the delta function, this allows one to directly
obtain the moments from the atomic positions, without first
calculating the surface height. Moreover, it records deep dis-
placements as happily as shallow ones and guarantees agree-
ment between sputter yield and the zeroth moment.

3. The convenience provided by method #2 requires assuming
that vacancies and interstitials immediately migrate vertically
to the surface, which is unlikely to be true, especially at
higher energies. In Ref. 126, the authors propose a method to
avoid this assumption. After each simulated impact, they
place a vacancy at the pre-impact point of all displaced atoms
and an interstitial at the post-impact point of redistributed
atoms. Then, these defects are allowed to diffuse under a
KMC simulation until annihilating or reaching the surface, at
which point the final crater shape is recorded. This approach
seems likely to be more realistic, but also considerably more
time consuming by requiring the extra KMC step.

2. Inherently longwave

A second important limitation of the crater function
framework is that it is an inherently long-wavelength approx-
imation—any expansion of Eq. (14) into a form like Eq. (16) is
founded on the assumption that the crater is small compared
to the pattern wavelength. As the wavelength shrinks to the
scale of the individual craters, this assumption becomes inva-
lid, and so the crater function framework can only be consid-
ered reliable in the “longwave” limit described above. As we
will see below, this limits the crater function framework’s
utility in detailed comparisons between competing physical
mechanisms. This should be contrasted with, for example, the
full-spectrum linear amplification rate for the Sigmund model
of sputtering,81 which is valid for all wavenumbers but inherits
any fundamental inaccuracy of the Sigmund model, in partic-
ular its breakdown at large angles of incidence. Because even
higher-order expansions of the framework are cumbersome
and do not mitigate its failure at high wavenumbers, it
appears that quantitative accuracy at both large angles and
large wavenumbers remains elusive.
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3. MD vs. BCA

An important question for the use of the framework con-
cerns the use of Molecular Dynamics vs the Binary Collision
Approximation for the collection of crater function moments. On
the one hand, the primary advantage of the BCA is obviously its
speed and ready availability to researchers without access to
extensive computing power. By design, however, BCA codes are
incapable of observing the many-body interactions that dominate
at the end of the collision cascade, which MD simulations reveal
to be non-trivial.127 On the other hand, most implementations in
MD are performed in a rather small periodic computational cell to
limit complexity; if the cell is too small, such simulations are sub-
ject to global shears, which must be addressed in post-process-
ing111 (fixed boundaries are vulnerable to different errors in a too-
small cell). The presence of “small displacement” error in the BCA
and “small cell” error inMDmeans that both approaches are likely
to remain important checks on each other—most likely the BCA
will become the standard for quick estimates and broad parame-
ter sweeps, with MD used to answer more detailed questions or
inform BCA parameter choices.

4. Comments on a proposed dependence on film
thickness

We note that Refs. 120 and 128 reported the derivation of an
additional effect within the Crater Function Framework due to
variations in the thickness of the amorphous film, having the form
ht / D11ðhÞ @

2h
@x2, where D11(h) is positive for all h. However, in our

opinion, these derivations contain modeling errors which, if
corrected, cause the postulated mechanism to vanish. In Ref. 120,
Eq. (17) describing a “modified” kinematic condition that depends
on film thickness contradicts the inherently local nature of the
kinematic condition, which is simply a statement of conservation
of mass applied at the film-vacuum interface. If the kinematic
condition is restored to its proper form, the term D11 obtained in
Ref. 120 does not appear. In Ref. 128, a different derivation of the
term D11 is presented. There, the correct kinematic condition is
used in Eq. (3), and the direct integration of the continuity equa-
tion leads correctly to Eq. (12). However, an arbitrary dependence
on the film thickness is again added in Eq. (13), which is inconsis-
tent with the boundary conditions used to obtain Eq. (12). Again, if
this contribution is removed, the termD11 does not appear. Hence,
although an unconditionally positive coefficient resembling D11(h)
would seem to significantly improve agreement with experiment
as shown in Refs. 121 and 129, at present, there does not seem to
be physical justification for such a term. [We would also argue
that the redistributive component of morphology evolution is
unlikely to have a depth dependence for intuitive reasons. Both
the crater function moments and the film depth are simply statis-
tical averages associated with the collision cascade, and so, a
direct dependence of the former upon the latter seems unlikely.]

D. The PyCraters library

This section has outlined the general features of the Crater
Function approach, including the potential promise for the gen-
eral problem of coefficient evaluation, and also technical hurdles

associated with its use. However,while the process of simulation,
statistical analysis, fitting, and differentiation is time-consuming,
it is also in principle mechanical, suggesting the utility of an
open-source library to centralize the best practices and avoid
repeated re-implementations. We have recently developed such
a library, which aims to be accessible to new users, compatible
with various simulation codes and extensible by advanced users
with needs not covered by the basic functionality. This suggests
implementation as a layered framework, in which

• different simulation codes are “wrapped” by a common
Python interface;

• statistical information is converted to a standard, internal
format;

• smoothing and fitting are performed automatically using
external libraries;

• commonly sought quantities, such as c…(h), are automati-
cally calculated.

This library is freely available on the project-hosting site
GitHub.130

V. STRESS AND VISCOUS RELAXATION

In addition to causing sputter erosion and atomic redistri-
bution through the collision cascade, ion bombardment has
been observed to induce significant amounts of stress in the
amorphized layer of monatomic targets and has long been theo-
rized to enhance the fluidity of that layer, allowing it to flow like
a highly viscous fluid. Here, we review recent models focused on
these effects and their interaction.

A. Theory

1. Ion-enhanced viscous flow

The original Bradley-Harper model assumed that the
relaxation of surface energy occurred by surface self-diffusion
as described by Mullins.20,69 However, within the experimental
community, an alternative mechanism of “ion-enhanced vis-
cous flow” (IVF) has long been discussed. The essential idea for
the cause of IVF is that the collision cascade creates21 a super-
saturation of vacancy-like131,132 and interstitial-like133 point
defects which, after re-thermalization of the atomic velocities,
migrate in directions so as to relieve the stress.134 The ion-
enhanced fluidity provides an additional mechanism of relaxing
the excess surface free energy associated with non-planar sur-
face geometries. Determining the precise contribution to the
dispersion relation requires solving the Stokes equations (the
limit of the Navier-Stokes equations in which the Reynolds
number Re 
 1). This was done by Mullins135 for the case of a
semi-infinite viscous fluid, and the resulting contribution to the
linear amplification rate R / – Fbq was first added to models of
ion-induced nanopatterning byMayer, Chason, and Howard.136

However, the semi-infinite viscous fluid studied by Mullins
represents the limit Q ¼ h0q ! 1, i.e., Mullins’s result applies
only when the “fluid” layer thickness is much larger than the
wavelength k ¼ 2p

q of the perturbation under consideration. In
many pattern-forming systems, however, this is not true. To
determine the effect of viscous flow in a film of finite thickness
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requires solving the Stokes equations in a domain bounded both
above and below. This was first accomplished by Orchard,26 who
found that

ROrchard Qð Þ ¼ � c
2gh0

Q sinh 2Qð Þ � 2Q½ 	
1þ 2Q2 þ cosh 2Qð Þ
� � ; (24)

where again Q ¼ h0q is the viscous film thickness times the
wavenumber, c is the surface free energy, and g�1 is the ion-
enhanced fluidity. In the limit q ! 1, one recovers Mullins’s
result R � � c

2g q. However, during low-energy ion bombard-
ment, the opposite limit q ! 0 is much more relevant, and in
that limit, one obtains a very different approximation of the
form R � ch30

3g q
4 (it is worth noting briefly that these two approxi-

mations should never appear together in the same model).
Notably, the dispersion relation in this limit of “surface-
confined” viscous flow exhibits the same power dependency as
that of surface diffusion for the small values of q, but in contrast
to the mechanism of surface diffusion, it is only weakly depen-
dent on temperature. These observations were first made by
Umbach,27 who found that replacing surface diffusion with
surface-confined IVF enabled much better agreement with
experimental data at low temperatures. These findings have
been confirmed by several subsequent studies (see, e.g., Refs. 28
and 137)

2. Response to stress

It has long been known that in addition to enhancing the
fluidity of the target surface layer, ion irradiation also creates
significant stress within that layer. This phenomenon has been
observed for both high-energy21–24,138 and low-energy25,49,139–141

irradiation. If IVF is an effective or even dominant means of
relaxing surface free energy, how might it interact with the
presence of these significant stresses? Two early studies of this
type deserve mention. First, it was proposed by Alkemade that
the different local ion incidence angles on the front and back of
a ripple would lead to differential heating and hence a slope-
dependent thermal expansion,142 influencing the propagation
direction of surface ripples formed through other processes. At
about the same time, Davidovitch et al. proposed that stress
could drive an instability as in the Asaro-Tiller-Grinfeld-
Srolovitz (ATGS) mechanism,143–145 in an attempt to explain
anomalous pattern formation near normal incidence.18 Although
neither of these mechanisms was supported by later studies
(and the anomalous patterns were found to be an artifact31),
they pioneered the idea that nanopatterns on ion-irradiated tar-
gets could potentially be driven by processes beyond the colli-
sion cascade.

Since these early attempts, several works have appeared
treating the amorphous film as a very viscous fluid, on which the
ion beam acts through mechanical means. For instance, Castro
and co-workers proposed a mechanism in which the ion beam
was proposed to act as an “effective body force,” exerting a
gravity-like force in the ion beam direction throughout the
amorphous film.146,147 With appropriate selection of the irradia-
tion angle dependence of the body force coefficient, ripples
were predicted to appear at angles above 45�, and with

appropriate choice of force coefficient, good agreement with
experimentally observed wavelengths was reported. More
recently, a model more closely tied to the underlying physical
processes was proposed by Norris.46,148 Drawing on earlier stud-
ies on keV-range ion bombardment138,139,149–151 and applications
of those ideas to lower energies,152,153 he proposed that, rather
than acting as a body force on the film, the atomic re-
arrangements of the collision cascade induce a “stress-free
strain,” adding not a force term but rather an additional contri-
bution to the stress-strain relationship, describing so-called
“anisotropic plastic flow” (APF). As described in Ref. 148, this
model has a dispersion relation of the form

RAPF Qð Þ ¼ �6fA
cos 2hð Þ h0qxð Þ2 þ cos2 hð Þ h0qy

	 
2
1þ 2Q2 þ cosh 2Qð Þ
� � ; (25)

where f is the flux (through a plane normal to the ion beam) and
A is a coefficient describing the induced plastic deformation per
unit of flux. This result exhibits similar agreement with experi-
ments using a more traditional continuum modeling approach,
more direct coupling to the underlying physical mechanisms,
and fewer assumptions. Indeed, all parameters needed for a
wavelength prediction were measured experimentally in the
same chamber, resulting in a fully parameter-free prediction of
the pattern wavelength that also agreed very well with experi-
mental results (see Fig. 9).

Subsequent work in this direction has shown great promise
in predicting observed behaviors over a range of experimental
parameters. For example, it was found that the body force
model, when coupled with a longstanding model of the depen-
dence of the in-film stress on the ion energy,154 predicted
remarkably well the scaling of the ripple wavelength as a func-
tion of ion energy observed in the linear regime.155 More
recently, several of the same authors showed that,when coupled
to estimations of the stress tensor for different materials

FIG. 9. Comparison of data and the predictions of the anisotropic plastic flow model
of Ref. 148 for the system 250 eV Arþ ! Si, with all required model parameter
groups determined experimentally. Agreement with parallel-mode ripple wave-
lengths is excellent, but as in Fig. 8, perpendicular-mode ripples are not predicted.
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obtained by molecular dynamics, the model was also consistent
with the material dependence of the angular response.156

B. Parameter evaluation

The two parameters most relevant to the mechanisms
described here are the ion-enhanced fluidity g�1 and the
coefficient of strain per unit of flux A. In Ref. 148, direct mea-
surements of these parameters were avoided because pre-
dicted pattern wavelengths could be expressed solely in
terms of the magnitude of the steady stress jT0j ¼ 6gfA.
Measurements of jT0j significantly pre-date the continuum
models described above, and this quantity can be obtained
either experimentally by wafer curvature measure-
ments21,23,134,140,141,157–159 or numerically using molecular
dynamics simulations.160–163 The former approach was used
in Ref. 148 to determine all parameters needed for wavelength
predictions to several significant digits. Consequently, the
agreement between the model and data in Fig. 9 is obtained
without any parametric adjustments.

Regardless of these considerations, however, direct values
of g�1 and A are obviously highly desirable. Unfortunately, mea-
surements or estimates of these parameters are non-trivial.
Otani et al. obtained a value of A by comparing Scanning
Electron Microscopy (SEM) images of irradiated trench struc-
tures to a simulation of the same using a continuum viscoelastic
model. Because they were able to achieve very good agreement
with experimental results by tuning the value of A, they pre-
sented this method as a means of evaluating A.138 Mayr et al.
obtained a value of g�1 by fitting a model of target evolution to
the behavior of molecular dynamics simulations.28,164 Neither of
these methods have seen widespread adoption. In particular,
most later works requiring an estimate of g�1 have simply re-
scaled the results in Ref. 28 to different ion energies.111,120,165

In most of the work described above, it has been customary
to assume that the mechanisms driving the ion-induced pattern
formation process depend on the ion flux only linearly within
rate constants—in other words, increasing the flux speeds up
the pattern formation process but does not otherwise change
the properties of the irradiated system. In the context of contin-
uum models described in this section, this view leads to the
common assumption that the fluidity g�1 (effectively a rate con-
stant in viscous flow) is proportional to the flux,21,164 which in
turn implies that the steady stress jT0j ¼ 6gfA would be inde-
pendent of flux. Recently, however, Ishii et al. performed a
detailed study on the flux-dependence of the stress using wafer
curvature measurements and found that these assumptions are
not valid.141 Instead, they found good agreement between their
measurements and a model in which the fluidity is proportional
to a concentration of “flow defects,” which itself evolves accord-
ing to a differential equation containing a bi-molecular recombi-
nation mechanism. For a given ion energy, a single fitted version
of these equations was able to explain observed stresses over a
wide variety of fluxes. The fit parameters included quantities
sufficient to calculate both g�1 and A, making this a promising
method for the direct experimental evaluation of these
parameters.

C. Discussion and open questions

1. Predicted transition angle

The agreement between predicted and observed patterns
in Fig. 9 obscures an important problem—although the disper-
sion relation (25) predicts a transition from flat surfaces to
parallel-mode ripples at 45�, silicon transitions near this angle
only by chance, and in general, the transition angle varies by
ion/target combination. Therefore, some mechanism enabling
different transition angles for different materials is required.
One possibility is described in a recent study by Moreno-
Barrado et al.,156 who introduced a depth-dependence to the
magnitude of the stress field and found that this dependence
could modify the transition angle; with simulation data for
impacts on both Si and Ge, these authors report good agree-
ment with observations. A second possibility is that the assump-
tions of a rotating, divergence-free stress tensor, although
confirmed in limited testing in Ref. 156, could nevertheless be
violated—more studies to confirm this finding would be a wel-
come addition to the literature. Finally, although the works
described here did not need to include the effects of erosion
and redistribution to obtain good agreement with experimental
results, such effects are undoubtedly still present and may shift
the transition angle from the value predicted by stress effects
alone.

2. Relationship to mass redistribution

The stress-driven viscous flow mechanism exhibits several
similarities with themechanism of mass redistribution described
above in Secs. III–IV. Both mechanisms cause a net flux of mass
in the “downbeam” direction. In both cases, the strength of that
flux depends on the incidence angle, and indeed, the angle
dependence of the dispersion relation (25) for the stress mecha-
nism in both x- and y-directions is identical to that seen for the
redistributive terms in the dispersion relation (13) combining the
results of Bradley and Harper with those of Carter and
Vishnyakov and Davidovitch. It is tempting, therefore, to con-
clude that perhaps the two approaches are simply different
ways to describe the same underlying phenomenon. However,
such a conclusion does not seem justified. First, the striking sim-
ilarity follows from the assumptions of each approach—both
suggest a mechanism with strength proportional to the incom-
ing ion flux [which varies as cos ðhÞ] and also to the magnitude of
the projection of the ion beam direction onto the surface [which
varies as sin ðhÞ]. Second, the twomechanisms act on very differ-
ent time scales. Mass redistribution occurs in the “prompt”
regime of impact lasting only picoseconds, during which the
atom velocity distribution has not fully relaxed to the Maxwell
distribution. This impact leaves behind significant stresses,
which then relax over the “gradual” regime lasting seconds.

3. Ripple rotation at grazing incidence

One of the fundamental successes of the original Bradley-
Harper model was its ability to predict the oft-observed transi-
tion from “parallel mode” to “perpendicular mode” ripples as h
! 90�.16 None of the alternative mechanisms described above,
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whether mass redistribution or stress-driven viscous flow, has
been able to explain this transition. Again, it is very likely that
erosive effects, although neglected in this section, are neverthe-
less still critical at grazing angles and therefore must be
included to explain the full range of angle-dependent behavior.
This will be explored in more detail below.

4. Ripple disappearance at higher energies

As suggested by Fig. 2, pattern formation at ion energies
below 1keV seems to depend very little on the irradiation energy
E.31 However, experiments suggest that a significant energy
dependence emerges in the tens of keV range and that at some
energies, all incidence angles are stable.121 This is somewhat
puzzling, as all the physical mechanisms described above are
unstable for at least some values of h. This suggests the possible
existence of some unconditionally stable mechanism that
becomes important as energy increases. The term D11ðhÞ @

2h
@x2

proposed in Refs. 120 and 128 would seem to provide the needed
stability,121,129 but given the concerns about its derivation dis-
cussed above and the successes of stress-based models
described here, it is natural to inquire whether somemechanism
associated with stress could also supply such a term. Recently,
inspired by images of expanding bubbles in cross-sectional TEM
images such as those found in the work of Chini et al.,33

Swenson and Norris studied the effect of ion induced swelling,
an effect omitted from prior treatments of (purely shear)
stress.166 Under appropriate simplifying assumptions, these
authors found that swelling could indeed be stabilizing at all
angles for wavenumbers typically observed in experiments. This
mechanism may therefore be useful in reconciling experiments
with theory at ion energies above 1 keV.

VI. COMPARING SCATTERING SPECTRA TO LINEAR
DISPERSION RELATIONS

In Secs. III–V, we have discussed several distinct
approaches to understanding ion-induced pattern formation.
Historically, there has been a tendency—whether in the high-
order expansions of the Sigmund model of sputter erosion,72,80

the early enthusiasm surrounding the discovery that mass redis-
tribution could be the dominant contributor to the crater func-
tion,111,165 or increasingly sophisticated models of stress-driven
viscous flow155,156—to seek a complete explanation of observed
pattern formation phenomena from a single physical mecha-
nism. Such explanations are often sought after some notable
early success of a new approach, such as the Bradley-Harper
theory’s ability to account for wavelength selection and ripple
rotation,16 the Crater Function Framework’s revelation that
mass redistribution could be a dominant mechanism at low
energies,111 or the realization of quantitatively accurate,
parameter-free wavelength predictions through models of ion-
induced stress.147,148

Although simple explanations for observed phenomena are
highly desirable, unfortunately, no single approach has suc-
ceeded in explaining the richness of observed behaviors in ion-
induced nanopatterning systems—even the relatively simple
variety of behaviors observed in Fig. 2. The unconditional insta-
bility suggested by the Sigmund model is contradicted by the

presence of flat surfaces near normal incidence.17 When the
surfaces are unstable as predicted, the observed growth
rate can significantly exceed theoretical predictions.167 The
temperature-dependence of a wavelength selected by surface
diffusion is inconsistent with observations at low temperatures.8

The dominance of redistribution at low energies does not con-
tinue inevitably as the ion energy increases.120 Models of
ion-induced stress have been unable to accommodate ripple
rotation near grazing incidence.148 Except in limiting regimes
(high temperature, low energy, normal incidence, grazing
incidence, etc.), no single mechanism seems to dominate the
pattern formation process.

A full accounting of observed behavior, then, must require
the presence of multiple competing (or cooperating) mecha-
nisms, and a central question is then how to distinguish and
measure the relative contributions of each. A potentially power-
ful approach to distinguishing between different physical mech-
anisms is to compare the amplification rate R(q) predicted by a
linear theory to measurements of surface scattering obtained
via Grazing Incidence Small-Angle X-ray Scattering (GISAXS),
which correlate with the surface structure factor S(q, t) when
the surface structure amplitudes are small.165,168 More specifi-
cally, given an evolving height profile h(x, y, t), the linearization
of the governing equations would predict that the Fourier trans-
form ~hðqx; qy; tÞ of the surface height profile satisfies the differ-
ential equation

@~h q; tð Þ
@t

¼ R qð Þ~h q; tð Þ þ b q; tð Þ; (26)

where q ¼ hqx; qyi is the wavevector; the first term on the right
describes the exponential growth associated with the linear
amplification rate R(q) and b(q, t) is the Fourier transform of an
added stochastic noise term. As described in Refs. 165 and 168,
this assumption leads to a structure factor hSðq; tÞi with the
form

hS q; tð Þi ¼ S q;0ð Þ þ
a qð Þ
2R qð Þ

" #
exp 2R qð Þt

� �
�

a qð Þ
2R qð Þ

; (27)

where a(q) is the magnitude of the noise. Therefore, given
GISAXS measurements of the structure factor hSðq; tÞi at early
times, one can fit Eq. (27) to the data to reconstruct the linear
amplification rate R(q) and then compare this to linear models of
the pattern-formation process. This process provides a rigorous
means of model testing and validation, and if the model is faith-
ful enough to the actual physical processes, it allows experimen-
tal extraction of model parameters.

In practice, however, this approach must overcome an
important obstacle. GISAXS spectra exhibit a meaningful varia-
tion in time—necessary for a good fit of Eq. (27) to the measured
behavior at a single wavenumber—for only a limited range of rel-
atively small wavenumbers. At first, this seems fortuitous, as in
this wavenumber range, linear amplification rates are reasonably
well-approximated by convenient quartic polynomials with the
form of Eq. (6). Unfortunately, however, in this range, both colli-
sional models and stress-based models first produce terms at
order q2, whereas both surface diffusion and surface-confined
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viscous flow appear at order q4. These similarities mean that
GISAXS spectra in this wavenumber range cannot distinguish
between these sets of mechanisms, which frustrates efforts to
compare their relative strengths.

A solution, introduced in Ref. 137 and made available to
the community through the open-source library PyGLIDRE
(“A Python library for GISAXS LInear Dispersion Relation
Extraction”),169 is to fit Eq. (27) to all wavenumber series at once,
with a(q) assumed to have a single constant value across all q
(i.e., the experimental noise is assumed to be white noise). With
careful attention to noise reduction in both the experimental
and data analysis stages, it was demonstrated that meaningful
measurements of the dispersion relation could be extracted
which extended to high values of q and clearly revealed that the
decay rate of high-wavenumber modes grew at most linearly in
q, invalidating the use of quartic polynomials of the form (6) as a
tool for comparison with the data. Instead, the data require
“full-spectrum” models retaining the full wavenumber depen-
dence for comparison.

Fortunately, although they have received less attention
than their longwave approximations, full-spectrum models
exist for many of the physical mechanisms discussed above.
As noted briefly, Bradley recently obtained the full-spectrum
dispersion relation associated with Sigmund’s model of sput-
tering.81 In addition, continuum results on stress-driven vis-
cous flow147,148 and Orchard’s result for viscous relaxation of
surface energy26 also retain the full wavenumber depen-
dence. Therefore, the authors of Ref. 137 compared measured
GISAXS spectra to the composite linear dispersion relation

R qð Þ ¼ Rdispl: qð Þ þ Rstress qð Þ
� �

þ ROrch: qð Þ; (28)

where

Rdispl: qð Þ ¼ �Cdispl:
X;Y hð Þ 1� exp � 1

2
Dqð Þ2

� �� �
;

Rstress qð Þ ¼ �6fACstress
X;Y hð Þ Q2

1þ 2Q2 þ cosh 2Qð Þ
� � ;

ROrch: qð Þ ¼ �
cg�1 hð Þ
2h0

Q sinh 2Qð Þ � 2Q½ 	
1þ 2Q2 þ cosh 2Qð Þ

� �
:

(29)

Here, Rdispl. (q) is a slight simplification of the dispersion relation
associated with the Sigmund model obtained in Ref. 81 [it was
hypothesized that although erosion and redistribution exhibit a
very different dependence on the angle of incidence h, they
might exhibit the same dependence on the wavenumber q,
allowing both effects to be included in this term], Rstress (q) is the
dispersion relation associated with anisotropic flow, obtained in
Ref. 148, and ROrch. (q) is again Orchard’s seminal result for the
dispersion relation associated with surface leveling of a viscous
film due to surface tension.26

The results of this approach were remarkable. Fitting the
composite model (28) and (29), via the relation (27), to the
expanded GISAXS data produced very good agreement with
the original GISAXS spectra over the entire range of wave-
numbers and irradiation angles studied (see Fig. 10).
Moreover, for each of the model parameters in Eq. (29), this

procedure produced estimates that were in reasonable to
excellent agreement with available external simulations,
experiments, or theoretical predictions of the model parame-
ters. For instance, the fitted value of the film thickness h0(h)
was identical to predictions based on BCA simulations, the
fitted value of the stress coefficients Cstress

X;Y ðhÞ closely tracked
the cosð2hÞ; cos2ðhÞ


 �
form predicted by Eq. (25), the inferred

steady stress exactly matched the value measured experi-
mentally by wafer curvature studies, and the fitted coeffi-
cients Cdispl:

X;Y ðhÞ were a very reasonable match to the values
obtained through the crater function framework.

The agreement in so many cases between the fitted and
measured values of the model parameters suggests that Eq. (28)
is a reasonably complete description of the dynamics of the irra-
diated surface and that the process of fitting Eq. (28) to GISAXS
spectra may be seen as a means of experimentally extracting
model parameters. This is especially important in the case of
parameters for which external estimates are unavailable. In par-
ticular, Ref. 137 produced the first direct comparison of the rela-
tive magnitudes of stress and displacement effects (now
distinguishable at higher values of q). Indeed, it was found that
the magnitudes of the stress coefficient significantly exceed
those of the displacement coefficient at angles below about
h¼60�, suggesting that for this experimental system, anyway,
stress is the dominant cause of surface smoothing near normal
incidence and the transition to parallel-mode ripples around
45�. At higher angles, however, (presumably erosive) displace-
ments seemed to remain a critical contributor to perpendicular-
mode instabilities near grazing incidence.

In addition, this approach produced the first experimental
estimate of the ion-enhanced fluidity g�1(h) and found it to be
higher than estimated previously by scaled MD results assuming
a linear dependence on flux. This result may resolve a puzzle
described above—the apparent ability of both stress and redis-
tribution to effectively predict observed pattern wavelengths for
250eV Arþ ! Si. Whereas the wavelength predictions in Ref. 111
due to mass redistribution relied directly on the estimated val-
ues of g�1, the predictions in Ref. 148 based on anisotropic plastic
flow were able to avoid estimating g�1 because the predicted
wavelength ended up depending only on the magnitude of the
steady stress jT0j, which can be obtained directly via wafer cur-
vature measurements. Hence,while the accuracy of the redistri-
bution model is vulnerable to changes in estimates of g�1—which
is poorly understood—the accuracy of the anisotropic plastic
flow model is not. The results here suggest that the former
results were, indeed, based on an under-estimate of g�1 and that
the latter are therefore more robust.

VII. CONCLUSIONS AND OUTSTANDING QUESTIONS

The past 10years have seen a remarkable advance in under-
standing the ion-induced nanopatterning process. The classic
results of pattern formation theory have been integrated into
the field, in particular the relationship between the type of linear
instability and the anticipated degree of order in the resulting
pattern. The mechanistic Sigmund model of erosion has been
extended into the full-spectrum linear regime. The Crater
Function Framework has emerged as a robust means of
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estimating the combined contribution of sputter erosion and
mass redistribution in the longwave limit. The commonly
observed buildup of stress in irradiated films has been revealed
as an important, and perhaps even dominant, contributor to
ion-induced nanopatterning. Finally, GISAXS has been shown to
be a powerful tool to distinguish the relative contributions of
different physical mechanisms by comparing the predictions of
full-spectrum linear models with observed spectra at early
times. Nevertheless, due to the complexity of multiple active
mechanisms with multiple parametric dependencies, the goal of
a robust predictive model remains frustratingly out of reach.We
therefore conclude this paper with several concerns that tran-
scend the individual approaches described above.

A. Simple fitted models are dangerous

In light of the unusually large number of physical mecha-
nisms that are important to the nanopatterning process, we
believe that a critical need going forward is a continued focus

on the methods of evaluating model parameters as a means to
eliminate fit coefficients. This concern is illustrated by two
recent series of studies that report success in accounting for
the presence and wavelength of patterns across a range of ion
energies and target materials. One is based solely on the Crater
Function Framework,120,123,128 whereas the other is based solely
on Effective Body Force models of stress.155,156 It is at first puz-
zling that such different approaches could each claim such suc-
cess. However, upon deeper examination, one observes that the
latter studies implicitly used the ion-enhanced fluidity g�1 as a
free parameter, and the former included several ad-hoc modifi-
cations to the standard crater function framework. In each case,
these decisions enabled better fits to data and, in a simpler, bet-
ter understood system, would be very reasonable. However, in a
system which has been repeatedly frustrated by the emergence
of new relevant physical mechanisms, such an approach
becomes dangerous, offering a false sense of confidence and
frustrating the interpretation of competing explanations for

FIG. 10. Amplification rates inferred from GISAXS for the system 1 keV Arþ ! Si. (a) Extracted values of R(qx, 0) for irradiation angles h 2 [0, 20, 35, 45, 65, and 80] over
the range q 2 [–1.5, 1.5] nm�1 and (b) extracted values of R(0, qy) for irradiation angles of h 2 [0, 25, 45, 55, 70, 80, and 85] over the range q 2 [–1.25, 1.25] nm�1 are
shown. In each case, the extracted values of R are indicated by squares, whereas fits of those data to the composite model in Eqs. (28) and (29) are shown by solid lines.
Reproduced with permission from S. A. Norris et al., Sci. Rep. 7, 2016 (2017). Copyright 2017 Scientific Reports.
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observed behavior. [As a cautionary tale, we note that there are
several examples in the literature of studies that “succeeded” in
explaining a regime of dots in the low-angle, low-energy corner
of Fig. 2, which ultimately turned out to be an experimental arti-
fact.] A careful study on the values of parameters such as g�1 in
common experimental systems, although potentially difficult,
would domuch to clear up this confusion.

B. Needed: Efficient continuum parameter evaluation

Although, for some time, the evaluation of parameters asso-
ciated with the collision cascade has been enabled by simulation
methods, the evaluation of parameters associated with stress
and viscous effects has been more problematic. In Sec. VI, we
reviewed work showing that with an appropriate strategy for
interpreting data at high wavenumbers, early-time GISAXS
spectra could be a powerful tool for evaluating these parameters
and distinguishing between physical mechanisms for which full-
spectrum linear models exist. However, GISAXS experiments are
expensive and time-consuming. A different strategy to experi-
mentally distinguish mechanisms such as displacements and
stress—which differ only at high wavenumbers—would be highly
desirable. Similarly, a straightforward method to evaluate
parameters associated with stress generation and ion-enhanced
fluidity is needed. The method of Ishii et al.,141 of fitting a “flow
defect” model to wafer curvature measurements, seems highly
promising in this light (indeed, the values extracted from
GISAXS spectra in Ref. 137 exhibit very good agreement with val-
ues inferred from Ref. 141). It would also be desirable to extract
parameters for this model from MD or BCA simulation, in the
spirit of Refs. 28 and 164, and to systematize the variety of MD
studies of stress.156,160–163 Ideally, these would be packaged with
something like the PyCraters library,130 allowing a user to write a
simple script that automates the performance of all simulations
needed for a certain experimental system and performs any
subsequent fitting and calculation required to obtain the needed
parameter values.

C. Nonlinear terms: Bridging the gap

The work described in this review has focused primarily on
the linear regime and is therefore applicable only to the early
stages of the pattern formation process. As we have seen, the lin-
ear regime is entirely capable of providing much insight in the
quest to identify the presence and strength of various relevant
physical mechanisms, especially when compared with GISAXS
spectra. However, to address questions on late-stage pattern for-
mation (e.g., on saturation, coarsening, and defect interaction),
nonlinear effects are of course required. The task here seems to
be to “bridge the gap” between the top-down longwave models
such as those in Refs. 64–67 on the one hand and bottom-up full-
spectrum models such as Eqs. (28) and (29) on the other hand.
The former, when fitted to experimental results, can readily pro-
duce astonishingly good visual agreement with experiment, and it
is therefore quite likely that the terms used therein are indeed
the dominant nonlinear terms. However, the work reviewed here
collectively suggests that each mechanism in the latter is neces-
sary to produce good agreement with GISAXS spectra in the

linear regime. This suggests that the remaining task is now to rig-
orously extend models of each one of the relevant mechanisms
into the nonlinear regime to build a physical basis for the values
of the coefficients of nonlinear terms.
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APPENDIX: DERIVATION OF THE GENERIC CRATER
FUNCTION FRAMEWORK

Equation (16) is a slight variation on the main result in Ref.
107, in which we have abandoned the use of “effective”
moments, and the result is therefore only valid in the linear
regime. In justifying this minor change, we take the opportu-
nity to reproduce the derivation of Eq. (16) in more detail than
appeared in Ref. 107. Specifically, limiting our attention to one
spatial dimension, we show that
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The first line simply repeats Eq. (15). In the second line, we
have simplified the integrand to the generic multi-scale formÐ
Rðu;�euÞdu and made the substitution u ! –u. In the third

line, we have performed a Taylor series in the small variable e
and used U to refer to the second argument of R. The key con-
ceptual step is then to notice that on the right-hand side of
that line, the symbols u and U are formally independent—the
derivatives are taken with respect to the second argument of
R, while the subsequent integral is taken only in the first argu-
ment. Therefore, u and U may be treated as if they were unre-
lated variables, allowing us to pull first the multiplication by u
(fourth line) and then the integral in u (fifth line) into the
derivatives with respect to U. In the sixth line, we recall the
definition of R, and in the seventh line, note that each term
contains a moment of the crater function Dh. The eighth line,
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not previously published, reveals that e was all along a tool
used to manipulate the integral and does not appear explicitly
in the final result.
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