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ABSTRACT: An anthraquinone featuring a chiral carboxylate- 2 o\j:"\ 9 o 2
capped methyl-branched side chain with an ether linkage, 2,2'- OH * \[)LO"
((9,10-diox0-9,10-dihydroanthracene-2,6-diyl)bis(oxy))- "y o O.O HOT‘)(LO OO

o o

dipropionic acid (2,6-D2PEAQ), was synthesized and evaluated

for use in aqueous redox flow batteries. It was found to have an Achiral side chains Chiral side chains
extraordinary solubility of 2 M (4 M electrons), corresponding Poor batiery candiate -

to a theoretical volumetric capacity of 107.2 Ah/L for the

negative electrolyte, which is 10 times that of its unbranched counterpart. The 2,6-D2PEAQ molecule demonstrated stability
against thermal decomposition and was extremely stable under cell cycling conditions. A capacity fade rate of 0.02%/day over
14 days was demonstrated in a 1.1 M 2,6-D2PEAQ nearly capacity-balanced cell when paired with a ferro-/ferricyanide
posolyte at pH 7. Compared to other aqueous redox-active organic molecules, its demonstrated fade rate is lower than that of
any molecule with a demonstrated volumetric capacity of >55 Ah/L, and its volumetric capacity is greater than that of any
molecule with a demonstrated fade rate of <0.5%/day.

s solar and wind energy installations become more with temporal degradation rates below 0.04%/day in full cell
Aprevalent, there will be an increased opportunity for charging/discharging cycling.'>'****>3' However, previous
affordable and scalable energy storage technologies to anthraquinone derivatives have required high pH or specific
manage the inherent intermittency of these energy sources and counterions to exhibit sufficient solubility, which limits the
to help manage peak shaving and load leveling for the electrical solubility of ferrocyanide, which is the most readily available
grid-'_4 Because redox flow batteries (RFBs) decouple power positive redox molecule for neutral and alkaline condi-
and energy capacity in the battery, great engineering flexibility tions.”* ™’ While other anthra%uinones that can cycle at
is available to design them for grid-level applications.”™” neutral pH have been reported,l fade rates have been high.
Whereas a variety of different electroactive materials have Here, we present an anthraquinone derivative that achieves
been tested in redox flow batteries, vanadium is a popular high solubility at mild pH with an extremely low fade rate
eIectr%acltDive material because of its four accessible red(ﬁ( (<0.02%/day)11 at a potentially low cost.>®
states.”” = However, vanadium suffers from volatile prices. We designed 2,2"-((9,10-diox0-9,10-dihydroanthracene-2,6-

Organic molecule§ can offgr tunable‘ Iphysiclal prope‘rFies that diyl)bis(oxy))dipropionic acid (abbreviated 2,6-di-2-propio-
allow the potential for high solubility, hlgh stability, and nate ether anthraquinone, 2,6-D2PEAQ, Scheme 1, 384.34 g/
potentially low-cost electroactive materials.'”'?® Electroactive mol) for a high-capacity high-stability negolyte (11_1 NMR in

: - . : 14-33 34-38
organic structures including quinones, ™~ ferrocenes,™ - . . . :
8 i ! ! Figure S1). This molecule features a branched side chain

viologens,"";‘_J'2 phenazines, 7 alloxazines,*® and nitroxide
radicals"”**=> have been explored as potential electrolyte
species for aqueous organic redox flow batteries.
Anthraquinone derivatives are attractive negolyte (negative
electrolyte) redox active species in aqueous redox flow
batteries because of their facile kinetics and low redox
potentials. In alkaline conditions, several anthraquinone
derivatives exhibit over 0.5 M solubility in aqueous solutions
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Scheme 1. 2,6-D2PEAQ Synthetic Route: 2,6-D2PEAQ (Shown on Right) Is Synthesized by Alkylation with Methyl 2-
Bromopropionate Ester Followed by Hydrolysis to the Carboxylic Acid”
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Figure 1. a. Solubility of 2,6-D2PEAQ: High solubility was obtained for 2,6-D2PEAQ at both neutral and alkaline conditions in both
potassium and sodium counterions. 2,6-DEEAQ, an analog without a branching methyl, showed poor solubility in similar conditions despite
having fewer hydrophobic methyl groups. b. Cyclic voltammogram of 1 mM 2,6-D2PEAQ and 1 mM ferrocyanide at pH 14 in KOH at a scan
rate of 0.1 V/s. ¢. Pourbaix diagrams of 2,6-D2PEAQ. d. First 12 cycles of pH swing cell of a flow battery negolyte containing 0.1 M 2,6-

D2PEAQ.

derived from methyl 2-bromopropanoate that is significantly
less expensive at lab scales than the side chain derived from
ethyl 4-bromobutanoate used in previous work (Supporting
Information Table 1)."

This branching moiety was designed to slow an Sy2
nucleophilic attack by hydroxide ions by replacing the primary
sp® carbon adjacent to the ether linkage with a secondary sp®
hybridized carbon that will experience a slower nucleophilic
attack. An intramolecular attack by carboxylate anions has also
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been previously proposed to cause side chain loss in ether-
linked anthraquinones at moderate pH ranges.'”** Decom-
position by this mechanism would be potentially slowed with
the shorter branched side chain because it would require a
highly strained 3-member ring transition state to attack at the
sp® carbon adjacent to the ether oxygen. 'H NMR thermal
decomposition studies showed no detectable loss of side chain
in either the oxidized or the reduced state when 2,6-D2PEAQ_
was stored at 90 °C for 1 week at pH 12 (Figures S3—S7).

https://doi.org/10.1021/acsenergylett.2c01691
ACS Energy Lett. 2023, 8, 600—607
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Figure 2. a. High concentration battery comprised a 1.1 M (5.3 mL) 2,6-D2PEAQ capacity-limiting negolyte and 30 mL of 0.6 M sodium
ferrocyanide, 0.4 M potassium ferrocyanide, and 0.2 M sodium ferricyanide posolyte at an initial pH of 7. The cell was maintained at 40 °C.
b. Cell voltage and power density vs current density at 40 °C at various SOCs. B. OCV vs SOC. c. Charge/discharge voltage profiles at
various current densities. The dotted line represents the full theoretical capacity, estimated by Coulomb counting. d. Coulombic, round-trip
voltage, and round-trip energy efficiencies at current densities up to 200 mA/cmz.

This molecule was found to have high solubility. Solubility
measurements were obtained by dissolving the maximum
possible amount of 2,6-D2PEAQ in an appropriate solution,
followed by UV—visible spectrophotometry (Figures 1a, S8—
$9). Using potassium hydroxide to deprotonate the carboxylic
acid group and then adjusting the pH using HCI, 2,6-D2PEAQ_
was found to dissolve up to 2.0 M at pH 7 and 2.1 M at pH 12.
If sodium hydroxide is used instead of potassium hydroxide, a
solubility of 1.9 M at pH 7 and 1.5 M at pH 12 can be
achieved. For comparison, a similar anthraquinone, diethanoic
ether anthraquinone 2,2'-((9,10-dioxo-9,10-dihydroanthra-
cene-2,6-diyl)bis(oxy) )diacetic acid (DEEAQ, 359.29 g/mol,
'H NMR in Figure S2), whose core is joined to the carboxylate
solubilizing group by one methylene unit, was synthesized and
found to have far lower solubilities. 2,6-DBEAQ (4,4’-((9,10-
anthraquinone-2,6-diyl)dioxy)dibutyrate), a previously pub-
lished molecule with a three-carbon unbranched ether-linked
side chain, also did not exhibit the high solubilities of 2,6-
D2PEAQ at pH 12 or 14 and did not show any appreciable
solubility at neutral pH."® This indicates the branching methyl
of 2,6-D2PEAQ_ may play an important role in its high
solubility.

This high solubility could be caused by a less energetically
favorable crystallization process due to the branch in the side
chains, as well as the presence of two enantiomers and one
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diastereomer due to the chiral carbon caused by the branch on
each chain.’”® The high solubility of 2,6-D2PEAQ with both
potassium and sodium counterions allows a mixed-electrolyte
salt to be used in cell cycling, which takes advantage of the
increased solubility of ferrocyanide in mixed sodium/
potassium cation solutions.>®

Figure 1b shows cyclic voltammetry of 1 mM 2,6-D2PEAQ_
in a pH 14 solution of potassium hydroxide. The reduction
potential is —445 mV vs SHE with a peak separation of 68 mV
at 0.1 V/s, enabling a theoretical cell voltage of 951 mV when
paired with a ferrocyanide positive electrolyte (posolyte).
Additional CV studies in an unbuffered solution at pH 7 and
pH 12 showed a reduction potential of —499 mV vs SHE at
pH 12 and —460 mV vs SHE at pH 7 with a peak separation of
56 mV and 53 mV, respectively (Figure S10). Pourbaix
diagram analysis (Figure 1c) shows a slope of —53 mV/pH
unit from pH 1.8 to pH 7.8, followed by a slope of —24 mV/
pH unit from pH 7.8 to pH 10.9, indicating a transition from a
2H*/2e™ process to a 1H"/2e™ process. This is followed by a
flat proton-decoupled electron transfer region when the pH is
above 10.9 (experimental details in Supporting Information
XI). Using rotating disk voltammetry studies, a diffusion
coefficient of 2.75 X 107% cm?/s and a rate constant of 3.40 X
107 cm s~ were shown (Figure S11).

https://doi.org/10.1021/acsenergylett.2c01691
ACS Energy Lett. 2023, 8, 600—607
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Figure 3. Long-term cycling of both high-concentration and high-concentration nearly balanced cells. Capacities are reported in Ah per liter
of negolyte. a. Charge and discharge capacity and Coulombic efficiency for the 1.1 M 2,6-D2PEAQ cell of Figure 2. The dip at day 5 is
attributed to a disruption in nitrogen flow to the glovebag. b. Nearly balanced 2,6-D2PEAQ cell at high concentrations, 1.1 M 2,6-D2PEAQ
(4.5 mL) and 1.0 M ferrocyanide (14 mL), in which the number of equivalents of ferrocyanide is reduced to 1.4, shows a capacity fade rate of

0.02%/day.

A pH swing cell was prepared in a glovebox at 0.1 M
concentration of 2,6-D2PEAQ, 0.1 M potassium ferrocyanide,
and 0.04 M potassium ferricyanide. The cell consisted of a
normal flow cell with a pH meter installed to measure the pH
of the negolyte. The cell cycled reversibly between pH 9 and
pH 12 for 22.2 h (Figure 1d). To separate the behavior of 2,6-
D2PEAQ from that of the ferrocyanide posolyte, a symmetric
cell was separately prepared at 0.1 M 2,6-D2PEAQ_and
showed a capacity fade rate of 0.04%/day over 4 days when a
potential difference square wave with amplitude 200 mV was
imposed (Figures S12—S13). pH swing cells have been
reported previously to demonstrate pH changes in a cell
during cycling.****

We prepared a flow battery with 0.1 M 2,6-D2PEAQ as the
capacity limiting electrolyte that showed a capacity fade rate
dependent on the voltage cutoffs (Figure $14).>*** A narrow
voltage window and, particularly, a lower charging voltage
cutoff were shown to slow capacity fade without meaningfully
changing capacity utilization. Hence, voltage cutoffs of 0.5 and
1.25 V were chosen for further evaluation. A 0.5 M 2,6-
D2PEAQ cell was then tested at 40 °C and showed a capacity
fade rate of 0.01%/day (Figure S15). The exact cause of this
capacity fade was not studied; however, 2,6-D2PEAQ may
share decomposition routes by side chain loss and anthrone
formation with other anthraquinones.l Y

A high concentration battery used a 1.1 M 2,6-D2PEAQ_
negolyte to test cell performance under realistic concentration
conditions (Figure 2a-d). An elevated temperature of 40 °C
was chosen to mimic industrial operating conditions. The cell
used a potassium form Nafion 212 membrane and an electrode
consisting of two layers of SGL 39AA carbon paper in each
electrode compartment. To suppress reversible chemical
oxidization by atmospheric O,, the cell was run in a glovebag
under a nitrogen atmosphere with constant purge. A pair of
cartridge heaters controlled by an Omega CS8DBPT PID
controller was used to maintain the temperature. Polarization
studies showed a peak power density of 0.16 W/cm® at a
current density of 300 mA/cm” and 100% SOC. The open
circuit voltage of this battery was 1.09 V at 90% state of charge
(SOCQ).

603

This 1.1 M cell was charged and discharged galvanostatically
with a current density of 100 mA/cm?, followed by voltage
holds at 1.25 V during charging and 0.5 V during discharging,
until the current density dropped below 2 mA/cm” The cell
was cycled for 27 days (470 cycles). The high-frequency
resistance of the cell was 2.35 Q¥cm?, which refers to the
ohmic resistance, contributed mostly by the membrane. The
Coulombic efficiency was greater than 99.8%. This cell lost
capacity at a rate of 0.013%/day or 0.0008%/cycle between
day 7 and day 27 (cycle 119 and cycle 470 (Figure 3a). This is
equivalent to 4.7% capacity fade per year. This cell used an
excess of posolyte to prevent air oxidation and posolyte
decomposition from interfering with accurate monitoring of
the capacity change of the negolyte. In combination with the
oversupplied posolyte, the electrolytes together exhibit a
volumetric capacity of 8.8 Ah/L and an energy density of 8.4
Wh/L. A measured volumetric capacity of 54.6 Ah/L and a
theoretical volumetric capacity of 59.0 Ah/L by Coulomb
counting for the negolyte alone were realized. The difference is
likely due to moisture in the 2,6-D2PEAQ solid. Using a
posolyte with balanced capacity, a theoretical energy density of
18.7 Wh/L would be attainable with these concentrations. A
negolyte and posolyte at their respective solubility limits would
deliver a theoretical volumetric capacity of 20.1 Ah/L and a
theoretical energy density of 19.1 Wh/L.

For practical designs, we expect the energy density of the cell
to be raised. To explore this prospect, we evaluated a cell
containing 4.5 mL of 1.1 M 2,6-D2PEAQ and 14 mL of 1.0 M
ferrocyanide, i.e., 1.4 equiv of ferrocyanide, composed of 0.3 M
potassium ferrocyanide and 0.7 M sodium ferrocyanide to
maximize solubility (Figure 3b). To further increase solubility,
2,6-D2PEAQ_was prepared with a 1:1 ratio of sodium to
potassium cations (Supporting Information XVI). The
concentration was chosen because it maintained high-capacity
density without posing engineering challenges associated with
the complex rheology observed at higher concentrations. A
slight excess of posolyte was used to ensure decomposition of
the negolyte was measured and the cell did not go out of
balance. This cell had a realized volumetric capacity of 59.0

Ah/L in the negolyte, an energy density of 13.6 Wh/L, and a

https://doi.org/10.1021/acsenergylett.2c01691
ACS Energy Lett. 2023, 8, 600—607
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Figure 4. Daily capacity fade vs demonstrated negolyte volumetric capacity of reported aqueous organic flow battery negolytes.
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refs 16, 19, 20, 22—24, 27, 28, 31-33, 37, 42—46, 48, 62, 64—82.

volumetric capacity of 14.3 Ah/L in the battery overall. This
cell was cycled for 14 days and showed a capacity fade rate of
0.02%/day and a Coulombic efficiency of 99.7%.

2,6-D2PEAQ was compared to all other reported aqueous
organic negolytes that have been demonstrated to cycle at least
0.1 M electrons for at least 10 cycles in a flow battery. The
slowest-fading example of each negolyte is represented in
Figure 4 (In cases where the lower demonstrated fade rate had
a significantly lower volumetric capacity than another reported
cell of the same molecule, both points are plotted.). Temporal
fades were estimated from the electrode geometric area and
current density where not provided. Where multiple runs of a
compound were reported in a single paper, the highest
concentration run was plotted. 2,6-D2PEAQ demonstrated the
highest energy density of any molecule with a demonstrated
fade of less than 0.5%/day. 1,8-PFP, a phenazine, demonstrates
improved capacity fade relative to 2,6-D2PEAQ with only
slightly lower demonstrated capacity. Note that 4C7FL, a
fluorenone derivative, exhibited an apparent capacity fade rate
equal to that of 2,6-D2PEAQ when the cell was run
galvanostatically but exhibited a higher demonstrated capacity
fade rate than 2,6-D2PEAQ_ when the cell was run with
intermittent potential holds to control the effects of changing
cell resistance—a testament to the importance of potentiostatic
processes, distinguished by the nomenclature of “apparent
capacity fade” vs “demonstrated capacity fade”.?

The cost of the active anthraquinone material might be
further lowered by attaching the highly solubilizing side chain
to less expensive anthraquinones. 2,6-D2PEAQ analogs
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starting from 1,8-dihydroxyanthraquinone and 1,4-dihydrox-
yanthraquinone were synthesized (Figures S16—S17); how-
ever, they were found to have unacceptably high capacity fade
rates of 2.8%/day and 1.1%/day, respectively (Figures S18 and
S19).

In conclusion, 2,6-D2PEAQ, an anthraquinone function-
alized with a low-cost chiral side chain, is extremely stable even
when cycling at elevated temperatures and high concen-
trations. The ability to operate at mild pH as the negolyte
cycles between pH 9 and pH 12 also reduces the cost of
electrolyte-contacting materials and maximizes the solubility of
the ferrocyanide posolyte. 2,6-D2PEAQ can dissolve to
concentrations up to 2.1 M in both neutral and alkaline pH.
This is a dramatic increase in solubility over the analog without
a methyl branch. Flow batteries using 2,6-D2PEAQ in the
negolyte have demonstrated an extremely low fade rate of
<0.029%/day or <7.3%/year and a realized negolyte volumetric
capacity of 58.9 Ah/L. Compared to other aqueous redox-
active organic molecules, its demonstrated fade rate is lower
than that of any molecule with a demonstrated volumetric
capacity of >55 Ah/L, and its volumetric capacity is greater
than that of any molecule with a demonstrated fade rate of
<0.5%/day. The use of chiral, branching, and other variations
on side chains is a promising direction for further increases in
the solubility and stability of redox-active organics.

https://doi.org/10.1021/acsenergylett.2c01691
ACS Energy Lett. 2023, 8, 600—607
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